Rinnovabili • floor piastrella fotovoltaica

Solare da calpestare: ecco Floor ®, la piastrella fotovoltaica firmata Invent

L’azienda veneta dà un nuovo volto al fotovoltaico integrato con una soluzione che permette di trasformare pavimentazioni inerti in sistemi energetici attivi

floor piastrella fotovoltaica
Credit: Invet

 

Design e alta tecnologia si incontrano nella piastrella fotovoltaica Floor ®

(Rinnovabili.it) – Il solare integrato ha da oggi una soluzione in più sul mercato. È la piastrella fotovoltaica Floor ® realizzata dalla veneta Invent, azienda che dal 2006 lavora per dare un nuovo volto all’innovazione energetica “made in Italy”. Dai pannelli solari “invisibili” che si trasformano in opere d’arte, alle tegole fotovoltaiche che imitano i tradizionali coppi, la società continua a lavorare su creazioni in grado di unire estetica ed alta tecnologia. Un matrimonio sempre più fondamentale per il settore del BiPV – building Integrated PhotoVoltaic.

 

Una recente ricerca europea ha stimato che il fotovoltaico integrato possiede la potenzialità di produrre oltre il 50 per cento della domanda elettrica attuale nel Vecchio Continente, offrendo vantaggi sia sul fronte economico che su quello prettamente visivo.  L’enorme varietà di colori, trame e formati disponibili oggigiorno, permette infatti di incorporare in modo flessibile i moduli nell’architettura urbana in perfetta continuità estetica con il paesaggio. Secondo gli scienziati, autori dello studio, a seconda del tipo di edificio, del sistema e del metodo di installazione è possibile raggiungere un’autonomia fino all’87 per cento per gli immobili ristrutturati con il solare.

 

Come funziona il pavimento fotovoltaico Floor?

In questa continua ricerca di bellezza e funzionalità si inserisce alla perfezione Floor, il fotovoltaico “da terra” creato da Invent con tecnologia proprietaria. Floor è un sistema di pavimentazione flottante, ossia che viene installato in posizione sopraelevata rispetto alla superficie da ricoprire, composto da piastrelle fotovoltaiche calpestabili. Il vetro che le riveste è temprato con una particolare lavorazione che lo rende antiscivolo e in grado di sopportare un peso di ben 200 kg per metro quadrato (ma la società sta già lavorando su una versione con portata maggiore).

Nel cuore di ogni piastrella ci sono 24 celle solari, per una potenza di 100/120 W a seconda della colorazione. “La conformazione a filo vetro – spiega Invent – permette la più libera modulazione e creatività in fase di assemblaggio dei pannelli e una resa estetica eccellente”. Le unità misurano ognuna 70×103 cm, possono essere composte a piacimento e installate facilmente attraverso l’utilizzo di un supporto meccanico regolabile, che le distanzia da terra ad un’altezza compresa tra i 3,5 e i 5 cm. Nello spazio tra suolo e piastrelle vengono alloggiati i collegamenti elettrici, rendendo così facilmente accessibile la componentistica a ispezioni, manutenzioni e interventi. E, potenzialmente, riducendo i costi di installazione, pulizia e mantenimento rispetto ai classici impianti sul tetto.

 

In fase di posa, i contatti vengono collegati a un sistema di ottimizzazione che migliora la resa dei pannelli in caso di ombreggiamento modulandone la produttività in base all’esposizione. “Questa accortezza tecnologica  – aggiunge la società – consente alle piastrelle illuminate di mantenere la resa al 100 per cento, anche mentre quelle in zona d’ombra produrranno meno energia. Non appena queste torneranno ad essere illuminate la produzione di energia verrà rimodulata fino al raggiungimento, nuovamente, del 100 per cento”.

 

floor_03

 

Floor® di Invent permette così di trasformare pavimentazioni inerti in sistemi attivi e sostenibili. Adatto all’esterno sia in contesti privati – residenziali e aziendali – che in luoghi pubblici come centri commerciali, fiere o piazze, il sistema di pavimentazione non dimentica la cura per l’estetica. Invent ha realizzato sei diverse finiture – Green, Teal, Gray, Gold, Brown e Black – che possono essere mixate e combinate a piacimento per elaborare disegni monocromatico oppure creare effetti grafici e pattern personalizzabili. L’elemento plus? Un sistema di illuminazione a led sapientemente inserito nei profili dell’installazione per non lasciare ma la pavimentazione al buio. La soluzione permetterà di apprezzare l’impianto anche di notte, conferendo un ulteriore funzionalità e bellezza al pavimento fotovoltaico Floor.

In collaborazione con Invent
Rinnovabili •
About Author / Stefania Del Bianco

Giornalista scientifica. Da sempre appassionata di hi-tech e innovazione energetica, ha iniziato a collaborare alla testata fin dalle prime fasi progettuali, profilando le aziende di settore. Nel 2008 è entrata a far parte del team di redattori e nel 2011 è diventata coordinatrice di redazione. Negli anni ha curato anche la comunicazione e l'ufficio stampa di Rinnovabili.it. Oggi è Caporedattrice del quotidiano e, tra le altre cose, si occupa quotidianamente delle novità sulle rinnovabili, delle politiche energetiche e delle tematiche legate a tecnologie e mercato.


Rinnovabili • Batterie al sodio allo stato solido

Batterie al sodio allo stato solido, verso la produzione di massa

Grazie ad un nuovo processo sintetico è stato creato un elettrolita di solfuro solido dotato della più alta conduttività per gli ioni di sodio più alta mai registrata. Circa 10 volte superiore a quella richiesta per l'uso pratico

Batterie al sodio allo stato solido
via Depositphotos

Batterie al Sodio allo Stato Solido più facili da Produrre

La batterie allo stato solido incarnano a tutti gli effetti il nuovo mega trend dell’accumulo elettrochimico. E mentre diverse aziende automobilistiche tentano di applicare questa tecnologia agli ioni di litio, c’è chi sta percorrendo strade parallele. É il caso di alcuni ingegneri dell’Università Metropolitana di Osaka, in Giappone. Qui i professori Osaka Atsushi Sakuda e Akitoshi Hayash hanno guidato un gruppo di ricerca nella realizzazione di batterie al sodio allo stato solido attraverso un innovativo processo di sintesi.

Batterie a Ioni Sodio, nuova Frontiera dell’Accumulo

Le batterie al sodio (conosciute erroneamente anche come batterie al sale) hanno conquistato negli ultimi anni parecchia attenzione da parte del mondo scientifico e industriale. L’abbondanza e la facilità di reperimento di questo metallo alcalino ne fanno un concorrente di primo livello dei confronti del litio. Inoltre l’impegno costante sul fronte delle prestazioni sta portando al superamento di alcuni svantaggi intrinseci, come la minore capacità. L’ultimo traguardo raggiunto in questo campo appartiene ad una ricerca cinese che ha realizzato un unità senza anodo con una densità di energia superiore ai 200 Wh/kg.

Integrare questa tecnologia con l’impiego di elettroliti solidi potrebbe teoricamente dare un’ulteriore boost alla densità energetica e migliorare i cicli di carica-scarica (nota dolente per le tradizionali batterie agli ioni di sodio). Quale elettrolita impiegare in questo caso? Quelli di solfuro rappresentano una scelta interessante grazie alla loro elevata conduttività ionica e lavorabilità. Peccato che la sintesi degli elettroliti solforati non sia così semplice e controllabile. Il che si traduce in un’elevata barriera per la produzione commerciale delle batterie al sodio allo stato solido.

Un Flusso di Polisolfuro reattivo

É qui che si inserisce il lavoro del team di Sakuda a Hayash. Gli ingegneri hanno messo a punto un processo sintetico che impiega sali fusi di polisolfuro reattivo per sviluppare elettroliti solidi solforati. Nel dettaglio utilizzando il flusso di polisolfuro Na2Sx come reagente stechiometrico, i ricercatori hanno sintetizzato due elettroliti di solfuri di sodio dalle caratteristiche distintive, uno dotato della conduttività degli ioni di sodio più alta al mondo (circa 10 volte superiore a quella richiesta per l’uso pratico) e uno vetroso con elevata resistenza alla riduzione.

Questo processo è utile per la produzione di quasi tutti i materiali solforati contenenti sodio, compresi elettroliti solidi e materiali attivi per elettrodi“, ha affermato il professor Sakuda. “Inoltre, rispetto ai metodi convenzionali, rende più semplice ottenere composti che mostrano prestazioni più elevate, quindi crediamo che diventerà una metodologia mainstream per il futuro sviluppo di materiali per batterie al sodio completamente allo stato solido“.  I risultati sono stati pubblicati su Energy Storage Materials and Inorganic Chemistry .

Rinnovabili •
About Author / Stefania Del Bianco

Giornalista scientifica. Da sempre appassionata di hi-tech e innovazione energetica, ha iniziato a collaborare alla testata fin dalle prime fasi progettuali, profilando le aziende di settore. Nel 2008 è entrata a far parte del team di redattori e nel 2011 è diventata coordinatrice di redazione. Negli anni ha curato anche la comunicazione e l'ufficio stampa di Rinnovabili.it. Oggi è Caporedattrice del quotidiano e, tra le altre cose, si occupa quotidianamente delle novità sulle rinnovabili, delle politiche energetiche e delle tematiche legate a tecnologie e mercato.


Rinnovabili • fotovoltaico materiale quantistico

Fotovoltaico, ecco il materiale quantistico con un’efficienza del 190%

Un gruppo di scienziati della Lehigh University ha sviluppato un materiale dotato di una efficienza quantistica esterna di 90 punti percentuali sopra quella delle celle solari tradizionali

fotovoltaico materiale quantistico
via Depositphotos

Nuovo materiale quantistico con un assorbimento solare medio dell’80%

Atomi di rame inseriti tra strati bidimensionali di seleniuro di germanio e solfuro di stagno. Questa la ricetta messa a punto dai fisici Srihari Kastuar e Chinedu Ekuma nei laboratori della Lehigh University, negli Stati Uniti, per dare una svecchiata alla prestazioni delle celle solari. Il duo di ricercatori ha così creato un nuovo materiale quantistico dalle interessanti proprietà fotovoltaiche. Impiegato come strato attivo in una cella prototipo, infatti, il nuovo materiale ha mostrato un assorbimento solare medio dell’80%, un alto tasso di generazione di portatori fotoeccitati e un’efficienza quantistica esterna (EQE) record del 190%. Secondo gli scienziati il risultato raggiunto supera di gran lunga il limite teorico di efficienza di Shockley-Queisser per i materiali a base di silicio e spinge il campo dei materiali quantistici per il fotovoltaico a nuovi livelli. 

leggi anche Fotovoltaico in perovskite, i punti quantici raggiungono un’efficienza record

L’efficienza quantistica esterna

Tocca fare una precisazione. L’efficienza quantistica esterna non va confusa con l’efficienza di conversione, il dato più celebre quando si parla di prestazioni solari. L’EQE rappresenta il rapporto tra il numero di elettroni che danno luogo a una corrente in un circuito esterno e il numero di fotoni incidenti ad una precisa lunghezza d’onda

Nelle celle solari tradizionali, l’EQE massimo è del 100%, tuttavia negli ultimi anni alcuni materiali e configurazioni avanzate hanno dimostrato la capacità di generare e raccogliere più di un elettrone da ogni fotone ad alta energia incidente, per un efficienza quantistica esterna superiore al 100%. Il risultato di Kastua e Ekuma, però, rappresenta un unicum nel settore.

Celle solari a banda intermedia

Per il loro lavoro due fisici sono partiti da un campo particolare della ricerca fotovoltaica. Parliamo delle celle solari a banda intermedia (IBSC – Intermediate Band Solar Cells), una tecnologia emergente che ha il potenziale per rivoluzionare la produzione di energia pulita. In questi sistemi la radiazione solare può eccitare i portatori dalla banda di valenza a quella di conduzione, oltre che direttamente, anche in maniera graduale. Come?  “Passando” per l’appunto attraverso stati di una banda intermedia, livelli energetici specifici posizionati all’interno della struttura elettronica di un materiale creato ad hoc. “Ciò consente a un singolo fotone di provocare generazioni multiple di eccitoni attraverso un processo di assorbimento in due fasi“, scrivono i due ricercatori sulla rivista Science Advances.

Nel nuovo materiale quantistico creato dagli scienziati della Lehigh University questi stati hanno livelli di energia all’interno dei gap di sottobanda ideali. Una volta testato all’interno di una cella fotovoltaica prototipale il materiale ha mostrato di poter migliorare l’assorbimento e la generazione di portatori nella gamma dello spettro dal vicino infrarosso alla luce visibile. 

La rivoluzione dei materiali quantistici

Il duo ha sviluppato il nuovo materiale sfruttando i “gap di van der Waals”, spazi atomicamente piccoli tra materiali bidimensionali stratificati. Questi spazi possono confinare molecole o ioni e gli scienziati dei materiali li usano comunemente per inserire, o “intercalare”, altri elementi per ottimizzare le proprietà dei materiali. Per la precisione hanno inserito atomi di rame tra strati di seleniuro di germanio e solfuro di stagno. “Rappresenta un candidato promettente per lo sviluppo di celle solari ad alta efficienza di prossima generazione – ha sottolineato Ekuma – che svolgeranno un ruolo cruciale nell’affrontare il fabbisogno energetico globale“.

Rinnovabili •
About Author / Stefania Del Bianco

Giornalista scientifica. Da sempre appassionata di hi-tech e innovazione energetica, ha iniziato a collaborare alla testata fin dalle prime fasi progettuali, profilando le aziende di settore. Nel 2008 è entrata a far parte del team di redattori e nel 2011 è diventata coordinatrice di redazione. Negli anni ha curato anche la comunicazione e l'ufficio stampa di Rinnovabili.it. Oggi è Caporedattrice del quotidiano e, tra le altre cose, si occupa quotidianamente delle novità sulle rinnovabili, delle politiche energetiche e delle tematiche legate a tecnologie e mercato.