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ABSTRACT Power generation forecasting, especially for solar power, is crucial for future energy planning.
In this study, a novel framework, namely FNS-Metrics, is proposed to integrate seasonal information from
First Nations calendars into solar power forecasting. Furthermore, a novel Conv-Ensemble framework is
proposed, leveraging the high-level feature extraction capabilities of Conv1D layers along with the low-level
feature extraction abilities of transformer and LSTM networks. A weighted feature concatenation technique
is also integrated into the proposed approach to combine the features effectively. To validate the proposed
FNS-Metrics and Conv-Ensemble framework, a new dataset is constructed by collecting power and weather
data from the Desert Knowledge Australia Solar Center in Alice Springs and integrating data related to
First Nations seasonal cycles. Experiments on this dataset show that the Conv-Ensemble framework with
FNS-Metrics outperforms traditional approaches, achieving state-of-the-art solar power prediction with the
highest R of 0.8641 and the lowest MSE of 22.41. These represent a 14.60% and 26.21% increase compared
to the baseline configuration of Conv-Transformer. The ablation study demonstrates that the Conv-Ensemble
framework improves performance compared to the baselines. Furthermore, the results for individual and

combined FNS-Metrics features show a progressive improvement in performance.

INDEX TERMS Deep learning, first nations seasons, LSTM, solar power forecasting, transformer.

I. INTRODUCTION

The global energy landscape is experiencing an extreme trans-
formation as the world moves from fossil fuel-based power
generation to renewable energy sources. Traditional power
generation systems, dominated by coal, natural gas, and oil,
have long been associated with adverse environmental im-
pacts, including greenhouse gas emissions, air pollution, and
climate change [1]. In response to these challenges, there has
been a growing interest in adopting green energy solutions,
such as solar, wind, tidal and biomass energy. Among these,
solar power systems have emerged as a prominent renew-
able energy source due to their scalability, reduced costs, and
potential for integration into residential and commercial set-
tings. In Australia, solar energy production is highly feasible
because the country has the highest average solar radiation
per square meter of any continent in the world [2]. Despite
installation and infrastructure challenges, northern and central
Australia hold great promise for solar energy.

Solar energy lacks long-term persistence due to variations
in solar irradiation across time and location. Geographic
differences significantly affect solar power generation; for
instance, India and Australia exhibit distinct patterns through-
out the year [3], [4]. Accurate solar power prediction is
challenging due to the complex interplay of weather, atmo-
spheric conditions, and the dynamic nature of solar irradiance.
These challenges hinder the development of a universal pre-
diction model. However, accurate predictions are essential
for improving power supply reliability and optimising energy
management. Solar power forecasting has also gained eco-
nomic importance with the global rise in solar energy use [5].
Advances in Machine Learning (ML) have shown promise in
improving prediction accuracy [6], helping to mitigate vari-
ability and support integration into energy grids. Recently,
Deep Learning (DL) techniques have gained attention for
their high accuracy and better generalisation across different
regions [7], [8].
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The DL-based solar power prediction methods have mainly
used historical power data and, in some cases, weather data.
For example, radiation, temperature, and rainfall are some
important classical metrics used to predict solar power gener-
ation [7]. In the context of Australia, various regions involve
different First Nations seasonal information that reflects the
diverse ecological knowledge and cultural practices of In-
digenous communities throughout the country. Incorporating
First Nations seasonal knowledge into solar power generation
predictions can significantly enhance accuracy by aligning
forecasts with natural cycles that have been observed and un-
derstood for thousands of years. Unlike conventional calendar
systems, these seasonal insights are deeply rooted in local
ecological cues, such as plant and animal behaviours, which
are closely tied to changes in sunlight and weather patterns.
By integrating this knowledge, predictions can be tailored
to reflect more granular shifts in environmental conditions,
leading to more precise and culturally informed forecasting
for specific regions across Australia.

Australian First Nations or Aboriginal people are the
original custodians of the land, with diverse cultures and
knowledge systems that have been sustained for over 60,000
years [9]. Notably, with Australia’s strong solar potential,
there’s increasing focus on using renewable energy to support
First Nations people, backed by new funding for sustain-
able energy projects.! Additionally, First Nation communities
in northern and central Australia possess seasonal calendars
that are specific to their local community. Tiwi, Gulumoer-
rgin, Kunwinjku, and Ngurrungurrudjba are among the most
widely used calendars by First Nation peoples in the northern
regions of Australia. Traditional Owners from the Tiwi Islands
and the Tiwi Land Council created the Tiwi Calendar, which
includes three seasons reflecting their ecological knowledge.
The Gulumoerrgin community in Darwin recognises seven
main seasons. Traditional Owners from Kunbarlanja (Gun-
balanya) developed the Kunwinjku calendar based on their
seasonal and environmental knowledge, while the Ngurrun-
gurrudjba calendar, created by Traditional Owners from the
Yellow Water region, reflects their Kundjeyhmi knowledge of
seasons and the environment. These calendars are closely tied
to weather patterns and seasons. The deep understanding of
local climate in these calendars enables First Nations people to
make informed resource management and sustainability deci-
sions. As climate change affects weather patterns, knowledge
of these calendars becomes crucial for adapting to environ-
mental challenges.

Incorporating First Nations seasonal cycles into solar
power forecasting is valuable, particularly as solar energy will
increasingly be supplied to rural communities in Australia.
This approach aligns with the culturally ingrained calendar
interpretations of these communities, including First Nations
people. However, to the best of our knowledge, no existing
work incorporates this seasonal information to predict solar

Uhttps://www.energy.gov.au/news-media/news/new- funding-renewable-
energy-first-nations-communities [last accessed: 29 August 2024]
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power generation effectively. Furthermore, standalone DL
models are prone to errors, as individual models are not
robust to noise and outliers, which is a common case in solar
power data. Considering these challenges, in this article, a
novel set of metrics are introduced along with an ensemble
DL approach to perform solar power prediction. The key
contributions of this article are summarized as follows.

1) A set of novel metrics, namely First Nations Sea-
sonal Metrics (FNS-Metrics), has been created based on
First Nations seasonal information, which includes the
First Nations seasonal information from calendars such
as Tiwi, Gulumoerrgin, Kunwinjku, Ngurrungurrudjba
and the modern calendar known as Red Centre.

2) A novel framework consisting of three 1-dimensional
convolutional (ConvlD) layers and an ensemble of
a Transformer model and a long short-term memory
(LSTM) model, as given in Fig. 1, is proposed to predict
solar power generation accurately. This approach em-
ploys a weighted late fusion of the features for optimal
performance.

3) A new dataset, namely AliDKA.? is constructed from
data collected at the Desert Knowledge Australia
(DKA) Solar Centre in Alice Springs for the pur-
pose of accurate solar power prediction. This is the
first solar power dataset to incorporate First Nations
seasonal information for solar power prediction. The re-
sults obtained for the proposed approach on this dataset
demonstrate that it outperforms existing methods in so-
lar power prediction.

Section II provides a comprehensive analysis of related
work in power prediction. The novel metric and proposed
power prediction framework are thoroughly described in
Section III. Section IV presents the experimental results and
performance evaluations. Lastly, Section VI offers conclu-
sions and suggestions for future research.

II. RELATED WORKS

There have been numerous research works on solar power
prediction, with the majority of these studies utilising DL
techniques [10]. To support the development of these kinds
of automated solar power prediction methods, recently, many
datasets have also been introduced [11]. Recent advances in
DL have led to more accurate predictions of solar power
generation [12].

In [13], a regression technique is proposed to automatically
forecast solar power generation. Further, the novel loss func-
tion proposed in their approach enhances the performance of
ML models. Yet, the performance of these ML models does
not meet the expected level. On the other hand, the Convolu-
tional Neural Network (CNN) has shown strong performance
in forecasting solar power generation [14]. A key contribution
of this study is a common model framework with a classifi-
cation module that increases adaptability and generalisation

2This dataset will be made available after acceptance.
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FIGURE 1. The proposed ensemble model with three Conv1D layers and the ensemble of the LSTM model and the Transformer model. The traditional and

FNS-Metrics are inputted for power prediction.

to predict known and unknown sites under various environ-
mental conditions. Hamad et al. [4] proposed DSCLANet, a
dual-stream CNN-LSTM, followed by a self-attention mech-
anism. The DSCLANet achieved the MSE, MAE and RMSE
of 0.0173, 0.0667 and 0.1273, respectively. In [15], an effi-
cient short-term forecasting model for solar power production
was proposed using a Variational Auto-Encoder (VAE) that
demonstrates low error rates. In all these works, solar power
is predicted, whereas, in a very recent work, data gathered
from a wind—solar tower system were used, and deep neural
networks were proposed [16]. In [17], a comparative study
of six machine learning techniques is conducted, with all six
demonstrating comparable performance in solar power pre-
diction.

Transfer learning with deep neural networks is highly ef-
fective for short-term prediction of solar power [18]. The
LSTM model with transfer significantly improves predic-
tion accuracy compared to the new LSTM model using the
inadequate dataset. Elsaraiti et al. [19] proposed an LSTM-
based solar power prediction approach that outperformed
the multi-layer perceptron (MLP). In [20], the bidirectional
LSTM (BiLSTM) model and the extreme learning machine
(ELM) algorithm are used to effectively predict solar power.
In this study, the improved ELM serves as the primary pre-
diction model. Kim et al. [21] proposed a two-step model
for predicting solar power generation, which utilises weather
information by connecting unannounced weather variables
with announced weather forecasts in a sequential modelling
process. Mo et al. [22] proposed a novel multi-step solar
prediction (MSSP) model developed with a transformer net-
work for solar power prediction, which demonstrated very
good performance [22]. In [23], a comprehensive analysis of
some state-of-the-art DL models is performed. The authors
compared MLP, LSTM, and gated recurrent unit (GRU) tech-
niques, finding that MLP is the most efficient model, while
GRU demonstrated higher speed than LSTM despite having
more layers. Zhu et al. [24] proposed the SL-Transformer
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for time-series power forecasting in wind and solar energy,
achieving an R? of 0.9989.

In summary, most of the existing power prediction ap-
proaches are limited in performance. Unlike individual model-
based approaches, ensemble learning methods have demon-
strated promising results in recent years [25]. For example,
in [7] and [26], deep ensemble approaches demonstrated su-
perior performance in predicting solar power. Taking these
into consideration, our approach utilises a novel ensembling
of Transformer and LSTM models, enhanced by convolutional
preliminary layers to improve the performance. In addition,
none of these approaches have incorporated factors derived
from various First Nations calendars and their corresponding
seasonal cycles.

1il. PROPOSED METHOD

In this section, the proposed FNS-Metrics and the novel
power prediction framework are explained in detail. The FNS-
Metrics are designed to incorporate various Australian First
Nations seasonal cycles, providing a culturally informed ap-
proach to evaluating solar power generation. The novel power
prediction framework integrates three Conv1D layers with an
ensemble of Transformer and LSTM models.

A. FNS-METRICS

Traditionally, solar power prediction is based on historical
data and weather data. Some of these approaches take advan-
tage of past solar irradiance and meteorological conditions to
model and forecast power output. In contrast, in the proposed
work, the First Nations seasonal information taken from four
calendars, such as Tiwi, Gulumoerrgin (Larrakia), Kunwinjku,
Ngurrungurrudjba and a modern Red Centre calendar, is used
to create the FNS-Metrics. While other First Nations calendars
are available, they often feature numerous seasons with fluid
boundaries and significant overlaps, making them less suit-
able for precise solar power forecasting. By incorporating the
seasonal information from four major First Nations calendars
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TABLE 1. Formulation of the FNS-Metrics Using the Season Information Taken From Tiwi, Gulumoerrgin (Larrakia), Kunwinjku, Ngurrungurrudjba, and
Red Centre Calendars. Here, s and u Represent Singleton and Union Variables, Respectively, Where s Represents the Variables for the Single-Season
Information, and u Represents the Variables for the Information of Overlapping Seasons

Months Tiwi  Gulumoerrgin  Kunwinjku  Ngurrungurrudjba Red Centre
January Ts,3 Gs1 K1 N Rs 1
February Ts,3 Gs1 Ks1 Ns1 Rsa
March Ts1 Gu,2 Ky, Ns.1 Rs 2
April T Gu,3 K3 Ns,2 Rs,2
May Tsq Gsa Ks 4 N3 Rs 2
June Ts1 Gu,5 Kus Nuy,4 Rs3
July Tsa Gue Ksps Ns.5 Rs 3
August Ts1 Gu,6 K7 Nu,6 Rs3
September T o Gu,7 Ks g Ns,7 R4
October Ts,2 Gs8 Ky Nuy,g Rs.a
November T 2 Gu,9 Ks 10 Ns9 Rs.a
December T3 Gu,9 Ks 10 Ns,9 Rs1
Variables 3 9 10 9 4

and one modern calendar, the FNS-Metrics aims to precisely
capture weather conditions, encompassing not only temper-
ature, irradiance and rainfall but also the nuanced details of
transitional weather patterns that are crucial for solar power
forecasting.

Table 1 presents the formulation of FNS-Metrics based on
seasonal information from four First Nations calendars and
one modern calendar. Each row corresponds to a month of
the year, with the columns representing the seasons associated
with each region. The notations s and u are used to differen-
tiate between singleton and union variables, respectively. The
singleton variables (s) correspond to months that fall strictly
within a single season, while the union variables (u) indicate
months that overlap between two seasons. For example, in
March, the Tiwi region is in a distinct single season denoted
by 751, while in the Gulumoerrgin and Kunwinjku regions,
the same month spans multiple seasons, represented by G, 2
and K, », respectively. By explicitly encoding overlapping
seasons using union variables, the model is better equipped
to represent transitional weather patterns that impact solar
power generation. Furthermore, this formulation facilitates
the incorporation of region-specific First Nation knowledge
systems, which define seasonal boundaries based on ecologi-
cal indicators rather than rigid calendar structures.

Based on the seasons extracted from the Tiwi, Gulumo-
errgin (Larrakia), Kunwinjku, Ngurrungurrudjba, and Red
Centre calendars, five additional features are constructed.
These features potentially represent diverse First Nations sea-
sonal patterns and consist of 3, 9, 10, 9, and 4 possible
categories, respectively.

B. CONV-ENSEMBLE FRAMEWORK

As shown in Fig. 1, the proposed framework consists of three
Conv1D layers to extract high-level features. Conv1D is used
because it is effective for extracting high-level features in
sequential data, such as time series or text, due to its ability
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to capture local features, enable hierarchical feature learn-
ing, and maintain translation invariance [27]. In solar power
prediction, capturing temporal dependencies and short-term
fluctuations is essential for accurate forecasting, and Conv1D
effectively models these patterns. Each layer extracts pro-
gressively abstract temporal features, enabling both fine- and
coarse-grained representation learning. Moreover, ConvlD
offers computational efficiency due to its reduced parameter
count compared to recurrent architectures, making it suitable
for real-time applications. All three Conv1D layers utilise the
rectified linear unit (ReLU) as their activation function. The
output features from the third Conv1D layer are then fed into a
flatten layer to convert the multi-dimensional feature map into
a one-dimensional vector. Let the input feature be represented
by x € RE*C, the output after the first Conv1D layer can be
expressed as follows based on the definition provided in [28]:

h; = ReLUW; *x+ by) (1)

where, W| € Rk *CxMi g the filter of the first Conv1D layer,
with k| being the kernel size, C the number of input channels
and M the number of output channels. by € RMi i the bias
term. * denotes the convolution operation across the time
dimension.

The output after the first ConvlD layer, hy, is then fed
into the second Conv1D layer. Similarly, the output from the
second Conv1D layer is passed to the third Conv1D layer for
further processing. A flatten layer is then used to convert the
multi-dimensional feature map into a one-dimensional vector.
The output of the flatten layer can be represented as follows
based on the definition provided in [29]:

z = Flatten(h3) (2)

where, z € RE*Ms ig the output after the flatten layer, with L’
being the reduced length of the time series after convolution,
flattening it into a vector of size L' x M3. h3 is the output
feature of the third Conv1D layer.
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TABLE 2. Layer Details of the Transformer Model in the Proposed
Conv-Ensemble Framework

Layer # Layer Type Input Shape  Output Shape

1 Input [N,] [N,]

2 Multi-Head Attention [NV, ] [N, 64]
3 Dropout [N, 64] [N, 64]
4 Layer Normalization [NV, 64] [N, 64]
5 Dense [V, 64] [N, 64]
6 Dropout [N, 64] [N, 64]
7 Layer Normalization [N, 64] [N, 64]
8 Dense [N, 64] [N,]

TABLE 3. Layer Details of the LSTM Model in the Proposed Conv-Ensemble
Framework

Layer # Layer Type Input Shape Output Shape
I Input NV, [N,]
2 LSTM [N,] [N, 64]
3 Dropout [N, 64] [N, 64]
4 LSTM [NV, 64] [64,]

1) ENSEMBLE MODEL

In the proposed framework, an ensemble of a transformer and
an LSTM model is used. The transformer network is efficient
in time series analysis, which arises from its ability to cap-
ture long-range dependencies and intricate temporal patterns
through self-attention mechanisms [30]. Consider that z is in
the shape of [N, ], Table 2 shows the organisation of the layer
with the corresponding input and output shapes. The output
shape of the feature is again [N, ], which is a 1-dimensional
vector. The proposed transformer model consists of eight lay-
ers, one of which is a multi-head attention layer. This layer
is used to capture diverse relational dynamics between input
elements that allow the model to attend to multiple aspects of
the input sequence concurrently throughout its other layers.

Subsequently, an LSTM model is incorporated into the
ensemble framework. In general, similar to transformers,
LSTMs are also suitable for time series analysis due to
their ability to effectively capture and maintain long-term
dependencies in sequential data through their memory cell
structure [31]. The input for the LSTM model is the same as
for the transformer, with z having a shape of [N, ]. Table 3
gives the layer information for the LSTM model integrated in
the proposed Conv-Ensemble approach. The model consists of
two LSTM layers and one dropout layer, with the final output
shape of the LSTM model being [64,].

As illustrated, the flattened feature z is then fed into the
ensemble model, where it is processed separately by both the
transformer and the LSTM models. Assume that the output
features of the transformer model and the LSTM model are e
and e, respectively. A weighted concatenation of the output
features e; and e is performed to combine the features, as
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FIGURE 2. AliDKA dataset construction: Location of the solar farm and
calendars considered.

given below.
€final = W X €] + W2 X € 3

where, w; and w; are the weights given for the features ex-
tracted by the transformer and the LSTM models, respectively.

These weights are optimised through a grid search mecha-
nism during the validation process to ensure the most effective
feature integration. Specifically, the grid search iteratively
evaluates a predefined set of weight combinations where
w; + wy = 1, such as (0.1, 0.9), (0.2, 0.8), ..., (0.9,0.1), to
identify the pair that yields the best validation performance.
By systematically scanning this constrained search space, the
model can balance the contribution of both features e; and
ey in a controlled manner. The optimal weights are selected
based on the performance metric MSE, calculated on the val-
idation set. The resultant feature, derived from this weighted
combination, is subsequently utilised to predict solar power
generation.

IV. EXPERIMENTS

In this section, the details of the newly constructed AliIDKA
dataset details, implementation and protocols and the exper-
imental results for the proposed novel FNS-Metrics and the
Conv-Ensemble framework are discussed.

A. ALIDKA DATASET

The solar power data in the newly constructed AliIDKA
Dataset is sourced from the Desert Knowledge Australia Solar
Centre.? Fig. 2 shows the location of the solar farm where
the AliIDKA dataset was collected, along with the First Na-
tion calendars and the Red Centre calendar considered in
this work. These First Nations calendars align closely with
the seasonal and environmental patterns observed in the so-
lar farm area, offering a more region-specific understanding
of climate variations. Although the solar farm is outside the
region where these Indigenous seasonal calendars originated,

3https://dkasolarcentre.com.au/download?location=alice-springs
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FIGURE 3. Correlation of traditional features with both active power readings taken in power meter 1 and power meter 2, individually.

their use is justified by geographical similarities and proven
broader applicability in comparable contexts.* Further, their
detailed reflection of local and surrounding weather condi-
tions provides valuable insight that improves the accuracy of
solar power generation predictions in this region.

Launched in 2008 in Alice Springs, this solar facility is
the world’s largest multi-technology solar demonstration site.
Its extensive array of solar technologies allows for com-
prehensive data collection and analysis across various solar
energy systems. Located in Alice Springs, Australia, the
Desert Knowledge Australia Solar Centre is significantly in-
fluenced by First Nations seasonal information, given that
the majority of Australia’s First Nations communities reside
in the Red Centre and northern regions [32]. Although the
Red Center calendar closely aligns with the region where
the AliDKA dataset is collected, nearby Indigenous calendars
may also have a significant influence due to their proximity.
This influence is reflected in the dataset, which incorporates
seasonal patterns and environmental factors specific to these
indigenous communities, thereby enhancing the relevance and
accuracy of the solar power data for local and regional appli-
cations. The integration of First Nations seasonal knowledge
underscores the commitment to incorporating traditional eco-
logical insights into modern technological frameworks.

The solar power data in the AlIDKA Dataset, collected
from 2019 to 2024, consists of data points recorded at five-
minute intervals. Altogether, the final cleaned AldKa dataset
comprises 465,078 rows of recordings, which provides a
substantial foundation for analysing solar power generation
patterns. Further, collected over a period of five years, the
dataset captures a diverse range of weather patterns, sea-
sonal variations, and rare environmental conditions, all of
which critically influence solar power generation. Historical
data before 2019 are excluded from the AlIDKA Dataset
to ensure consistency and relevance, as the dataset focuses
on the most recent technological advancements and weather
conditions relevant to recent years. In addition to the five
features provided by the novel FNS-Metrics, the AlIDKA
Dataset includes eight traditional features, such as tempera-
ture, relative humidity, two readings for horizontal radiation,
wind direction, daily rainfall, and both global and diffuse
tilted radiation—that exhibit a high correlation with the active
power generated by solar cells.
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According to the literature, these traditional features are
proven to be significant in predicting solar power [10]. In ad-
dition, the impact of these features is examined and validated
through further correlation analysis. Fig. 3 presents the cor-
relation between eight traditional features and the two active
power measurements read on master meters 1 and 2, analysed
individually. Although each traditional feature is examined for
its relationship with active power readings from both meters to
understand how various meteorological factors influence solar
power generation, the influence of individual features is not
analysed in this study, as the primary focus is on investigating
the impact of the proposed novel FNS-Metrics.

B. IMPLEMENTATION AND PROTOCOLS

The Conv-Ensemble framework is implemented in Python
using the TensorFlow® ML framework due to its flexibil-
ity and wide support for deep learning models. Training on
an NVIDIA GeForce GTX 1080 Titan GPU server ensures
efficient handling of computationally intensive operations,
significantly reducing training time. The dataset is split with
80% allocated for training and 20% for testing. The test set
consists entirely of unseen data, which ensures a clear sep-
aration from the training process. This setup allows us to
rigorously evaluate the model’s ability to generalise to out-of-
distribution (OOD) scenarios as well. The model was trained
for 50 epochs using the Adam optimiser with mean squared
error (MSE) as the loss function, incorporating early stopping
to prevent overfitting. The transformer model is configured
with hyperparameters that include 4 attention heads, a key
dimension of 64, a dropout rate of 0.1, an epsilon value of
le-6, and ReLLU as the activation function. The LSTM model
is configured with 64 units and a dropout rate of 0.1.

The results are presented using evaluation metrics, such as
the coefficient of determination R-Squared (R?) and MSE.
The R2, as shown in (4), serves as a performance indicator
to evaluate how effectively a model captures the underlying
patterns in the data. The values for R? range between 0 and
1, where a high value does not always imply that the model is

4[Online]. Available: https://www.csiro.au/en/research/indigenous-
science/indigenous-knowledge/calendars
5[Online]. Available: https://www.tensorflow.org/
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TABLE 4. Comparison of the Results Obtained on the AliDKA Dataset for Solar Power Prediction of the Active Power Data From Power Meter 1. Trad -
Traditional Metrics, RC - Red Centre and FNS - FNS-Metrics. The Models Highlighted in Bold Represent Different Configurations Used for the Ablative Study

R? MSE
Models
Trad Trad + RC  Trad + FNS Trad Trad + RC  Trad + FNS

GAM [17] 0.3565 0.3592 0.3811 190.17 188.62 181.54
SL-Transformer [24]  0.4274 0.4303 0.4963 160.55 159.43 152.48
BiLSTM [20] 0.3908 0.4005 0.4199 179.62 177.51 171.74
DSCLANet [4] 0.4470 0.4476 0.5136 154.63 152.18 147.31
LSTM 0.3715 0.3789 0.4013 184.31 183.17 178.22
Transformer 0.4023 0.4138 0.4517 168.62 166.57 160.74
Conv-LSTM 0.4914 0.5128 0.5891 136.63 132.52 124.12
Conv-Transformer 0.5852 0.6137 0.6792 122.15 119.57 110.08
Conv-Ensemble 0.7125 0.7347 0.8015 101.26 100.87 96.13

good, especially if the model is overfitting. 3) Transformer and LSTM: These models are composed

solely of the Transformer and LSTM components

n 52 - . . .
RE—1— im0 = 9) (4) utilised in the proposed method, with no concatenation
Yo i — 7)? employed, as they are treated as individual models.

where, y; represents the observed values, ; the predicted val-
ues, and y the mean of the observed values. The numerator,
Z?:l i — )75)2, measures the sum of squared residuals, indi-
cating model errors, while the denominator, > 1, (y; — 7)2,
measures the total variance in the observed data.

The values for R? range between 0 and 1, where a high
value does not always imply that the model is good, especially
if the model is overfitting. Hence, the MSE, as given in (5), is
also used as an evaluation metric along with R?.

1 n
MSE =3 (i =5’

i=1

&)

In this equation, y; represents the observed values, y; the
predicted values, and n the total number of data points.

C. RESULTS AND DISCUSSION

The proposed Conv-Ensemble framework is evaluated using
the newly constructed AlIDKA dataset, and the results are
subsequently compared with existing approaches and base-
lines. Some of the existing approaches have been reproduced
based on the details provided in the original articles, with po-
tential slight variations in the implementation. The baselines
compared are variations of the proposed approach that do not
integrate the ensemble methodology, as given below.

1) Conv-Transformer: This configuration is derived by de-
taching the LSTM component from the proposed Conv-
Ensemble framework and eliminating the weighted
concatenation of embeddings.

2) Conv-LSTM: This is constructed by detaching the
Transformer component from the proposed Conv-
Ensemble framework, with the weighted concatenation
of embeddings also removed, as no ensemble is in-
volved.
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A comparative analysis with these baseline models helps
demonstrate the superiority of the ensemble architecture
inherent in the proposed Conv-Ensemble framework. Further-
more, the impact of each calendar’s information incorporated
into the FNS-metrics is systematically evaluated by testing
the proposed approach and baselines individually for each
calendar using traditional metrics.

Tables 4 and 5 present the results obtained for the proposed
framework, as well as for other baseline and state-of-the-
art methods in solar power prediction of the active power
data from Power Meter 1 and Power Meter 2, respectively.
The state-of-the-art approaches include generalised additive
model (GAM) [17], Savitzky—Golay filter and local outlier
filter with LSTM and transformers (SL-Transformer) [24],
BiLSTM [20] and DSCLANet [4]. The R? and MSE values
are reported both with and without incorporating the novel
FNS-Metrics features. In addition, the results are reported
using Red Centre information with traditional features.

Among the models for solar power prediction of the active
power data from Power Meter 1, the proposed Conv-Ensemble
model with the FNS-Metrics features exhibits the best
performance, achieving the highest R? value of 0.8015 and
the lowest MSE of 96.13. This represents an improvement
of 0.0890in R? and a reduction of 5.13in MSE compared
to the Conv-Ensemble model used without the FNS-Metrics
features. In terms of R? and MSE, the Conv-Transformer and
Conv-LSTM models achieved the second- and third-best per-
formances, respectively. In predicting active power for Power
Meter 1, the inclusion of Red Centre calendar information
slightly improves performance compared to using only tradi-
tional features. It is also important to note that the arrangement
of ConvlD layers with transformer and LSTM networks
significantly enhances solar power prediction capabilities
compared to standalone transformer and LSTM networks.
The SL-Transformer [24] and BiLSTM [20] approaches also
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TABLE 5. Comparison of the Results Obtained on the AliDKA Dataset for Solar Power Prediction of the Active Power Data From Power Meter 2. Trad -
Traditional Metrics, RC - Red Centre and FNS - FNS-Metrics. The Models Highlighted in Bold Represent Different Configurations Used for the Ablative Study

R? MSE
Models
Trad Trad + RC  Trad + FNS Trad Trad + RC  Trad + FNS

GAM [17] 0.3715 0.3762 0.3941 101.22 100.71 94.16
SL-Transformer [24]  0.4722 0.4891 0.5321 72.64 70.92 65.34
BiLSTM [20] 0.4213 0.4314 0.4716 88.64 86.47 81.78
CNN [33] 0.3756 0.3921 0.4178 97.18 95.38 91.33
CNN-LSTM [34] 0.4328 0.4521 0.4932 80.55 78.46 71.91
DSCLANet [4] 0.4961 0.5047 0.5524 63.42 61.51 54.52
LSTM 0.4012 0.4118 0.4481 93.17 92.91 90.03
Transformer 0.4562 0.4688 0.5124 81.11 79.63 73.61
Conv-LSTM 0.5512 0.5734 0.6348 50.12 48.67 42.73
Conv-Transformer 0.6671 0.6837 0.7394 38.64 36.75 30.37
Conv-Ensemble 0.7645 0.7934 0.8641 29.16 27.24 22.41

Power Meter 1

Power Meter 2

GAM SLTransformer BLSTM DSCLANet LsTM Transformer Conv-LSTM  Conv-Transformer  Conv-Ensemble

= Re[Wad] —— R[Tad+FNS] == MSE[Tad] —— MSE (Tad + FNS]

cAm SLTransformer BILSTM DSCLANet sTM Transformer Conv'lSTM  Convransformer  Conv-Ensemble

R (Trad] Re[Tad +FNS] == MSE(Tad] —— MSE(Trad + FNS]

FIGURE 4. Improvements in R? and MSE of all models in solar power prediction with and without FNS-Metrics, for active power data from Power Meters

1 (left) and 2 (right).

demonstrated superior performance compared to their
respective counterparts, the standard transformer and LSTM
networks.

With the active power data from Power Meter 2, as shown
in Table 5, the proposed Conv-Ensemble framework again
outperforms baseline models and existing state-of-the-art
methods in predicting solar power generation. Similar to the
experiments conducted on the active power data of Power
Meter 1, most of the experimental results and the ranking of
the methods in terms of R? and MSE are consistent with those
observed for Power Meter 2. Similar to the previous case, the
inclusion of Red Centre calendar information as an additional
feature enhances performance compared to using only tradi-
tional features. However, the MSE values are comparatively
lower for Power Meter 2 due to the lower generated power
compared to Power Meter 1. This indicates that while the
relative performance of the models remains similar, the ab-
solute error values are reduced in scenarios with lower power
generation.

In both cases (i.e., the active power data from Power
Meters 1 and 2), all the models, including the proposed
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Conv-Ensemble framework, showed improved performance
when the novel FNS-Metrics were combined with other tradi-
tional features. This underscores the benefits of incorporating
the novel FNS-Metrics features extracted from First Nations
calendars into the prediction models. Fig. 4 visually demon-
strates the improvement achieved by integrating FNS-Metrics
compared to the performance before their inclusion. The left
figure illustrates the performance improvement of all models
in solar power prediction using the active power data from
Power Meter 1, while the right figure shows the performance
enhancement of the models using the active power data from
Power Meter 2. The enhanced prediction ability suggests that
integrating various First Nations seasonal information can sig-
nificantly refine forecasting models. Moreover, these results
highlight the potential for incorporating diverse and culturally
relevant data to improve the performance of predictive analyt-
ics in future energy applications.

Fig. 5 illustrates the comparison between the actual power
generated and the predicted values, highlighting the perfor-
mance of the proposed Conv-Ensemble model relative to the
two baseline models, Conv-Transformer and Conv-LSTM.
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FIGURE 5. Comparison of actual and predicted solar power generation using Conv-Ensemble, Conv-Transformer and Conv-LSTM across different
irradiance solar power generation windows from Master Meters 1 and 2. The power generated in both power meters is given in kWh and each time slot

represents 5 minutes.
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FIGURE 6. Heatmap showing error patterns in solar power generation across different irradiance periods using the proposed Conv-Ensemble approach.

Among all baselines, these two are selected because they
represent the second and third best-performing approaches
following the proposed framework. The top and bottom sam-
ples shown in this figure are derived from Master Meters 1 and
2, respectively. The plots on the left, middle and right corre-
spond to solar power generation during periods of increasing
irradiance (morning), peak irradiance (noon) and decreasing
irradiance (afternoon), respectively. The results presented are
based on the combined features from traditional metrics and
FNS-Metrics. As can be seen, the proposed approach consis-
tently outperformed others in predicting solar power across
all six samples (i.e., solar power generation windows). This
highlights the robustness of the proposed FNS-Metrics and
the superiority of the Con-Ensemble framework in accurately
predicting solar power generation.

A heatmap was generated to analyze the error patterns in
solar power generation during different irradiance periods, as
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shown in Fig. 6. This heatmap is generated for the proposed
Conv-Ensemble approach. The heatmap reveals that large er-
rors consistently occur during peak irradiance periods when
solar power generation is at its highest. These high error
rates may be due to the Conv-Ensemble model’s difficulty
in accurately capturing the rapid fluctuations in solar power
generation during these periods, leading to greater deviations
between the actual and predicted values. Additionally, the in-
creased complexity of solar dynamics at peak irradiance might
challenge the ability of the proposed Conv-Ensemble model to
generalise effectively. Further refinement of the model could
enhance its responsiveness to these critical fluctuations, po-
tentially improving overall predictive performance.

Notably, very high error rates are observed at the start and
end of the day, corresponding to periods of low solar power
generation. This pattern is visually evident in the heatmap,
where red shades dominate the early morning sections of the
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TABLE 6. The Result for Individual and Combined FNS-Metrics Features.
Trad - Traditional Metrics

Metrics R? MSE
Trad 0.7645  29.16
+ Tiwi 0.7812  28.14
+ Gulumoerrgin 0.7924  27.62
+ Kunwinjku 0.8063  26.34
+ Ngurrungurrudjba 0.8136  24.79
+ Tiwi + Gulumoerrgin 0.8194  24.05
+ Tiwi + Gulumoerrgin + Kunwinjku  0.8234  23.44
+ FNS-Metrics 0.8641 2241

left plots and the late afternoon sections of the right plots.
These high error rates may be linked to the inherent variability
in solar irradiance during dawn and dusk, where the angle
of the sun causes rapid changes in light intensity. Addition-
ally, the atmospheric conditions during these times, such as
increased cloud cover, can lead to unpredictable fluctuations
in solar input, complicating accurate power generation, which
makes the prediction inaccurate. The combination of these
factors creates a challenging environment for the proposed
model, highlighting the need for enhanced modelling tech-
niques that can better account for these transient and complex
conditions. Improving the model’s performance during these
critical periods could significantly enhance overall prediction
accuracy.

To illustrate the impact of individual features incorporated
in the FNS-Metrics, an ablative study is performed, and the
results are summarized in Table 6. In this ablative study,
only the proposed Conv-Ensemble framework is employed.
First, each calendar’s information is added individually to the
traditional metrics, and both R and MSE are recorded. As
can be seen, as features from FNS-Metrics are added, both
R? and MSE improve, which indicates the value of incorpo-
rating First Nation knowledge into the model. In particular,
among the individual calendars, the Ngurrungurrudjba sea-
sonal information enhanced the performance of the proposed
Conv-Ensemble framework more than the other calendars.
This improvement may be attributed to the fact that Ngur-
rungurrudjba is the region closest to the location where the
solar data was collected. The performance of the proposed
Conv-Ensemble framework, incorporating combinations of
the First Nation calendars with traditional metrics, is also
examined, as demonstrated in the last three rows of Table 6.
The results demonstrate that the integration of combined First
Nation calendar information leads to improved performance
compared to the use of individual calendar information.

V. DISCUSSION

The proposed Conv-Ensemble framework exhibits certain
limitations concerning real-time prediction capabilities. Due
to the relatively long training time required, integrating re-
cent data into the model is constrained to periodic retraining
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processes. This temporal lag may hinder the framework’s re-
sponsiveness to abrupt changes in data distribution. Neverthe-
less, as a lightweight approach, the framework demonstrates
faster processing compared to deeper and more complex ar-
chitectures. To enhance adaptability and reduce retraining
overhead, integrating incremental learning strategies could be
a promising direction for future development [35].

In the past, heuristic, metaheuristic and optimisation al-
gorithms have been employed in time series forecasting. In
data-scarce scenarios, these methods are favoured for their
low data requirements and computational efficiency and are
often used for parameter tuning or as components in hy-
brid models. However, the comparison of these approaches
is avoided because they generally struggle to model complex
temporal dependencies and interactions across multiple vari-
ables [36]. While heuristic, metaheuristic and optimisation
algorithms remain useful in specific contexts, this study fo-
cuses on deep learning due to its superior predictive accuracy
and scalability. Future work may investigate hybrid frame-
works that integrate the strengths of both approaches.

The computational complexity of deep neural networks,
including the proposed Conv-Ensemble framework, is influ-
enced by several key architectural and operational factors.
These include the number of layers in the network, the di-
mensionality of the input data, and the specific operations
performed within convolutional and dense (fully connected)
layers. Among these, convolutional layers typically domi-
nate the computational cost, especially in vision-based or
spatial-temporal tasks. The computational complexity of a
convolutional layer can be approximated as O(n - k* - m),
where n represents the number of input feature maps, k is the
spatial size of the kernel (assuming square kernels), and m
denotes the number of output feature maps or filters [37]. This
formulation highlights how increasing the number of filters or
kernel size can significantly impact the overall computational
load. While such architectures can be computationally inten-
sive, they scale effectively on modern GPUs and are supported
by optimised libraries such as TensorFlow [38], which enables
practical deployment even on moderately powered hardware.

VI. CONCLUSION

In this article a novel feature set, namely FNS-Metrics for
solar power generation prediction, is proposed. The FNS-
Metrics uniquely incorporate the First Nations’ seasonal
cycles from four First Nations calendars, which is a crit-
ical consideration for accurate predictions in the top-end
of Australia. Furthermore, a novel Conv-Ensemble frame-
work is proposed, which combines ConvlD layers with
transformer and LSTM networks to demonstrate the advan-
tages of leveraging diverse feature extraction capabilities. The
weighted feature concatenation technique integrated with the
proposed approach further enhances the model’s ability to
accurately predict solar power generation. The experimen-
tal results on a newly constructed dataset from the Desert
Knowledge Australia Solar Center in Alice Springs, namely
the AliDKA dataset, validated the superiority of the proposed

893



THUSEETHAN ET AL.: CONV-ENSEMBLE FOR SOLAR POWER PREDICTION WITH FIRST NATIONS SEASONAL INFORMATION

FNS-Metrics and Conv-Ensemble framework in solar power
prediction. Specifically, the Conv-Ensemble framework with
FNS-Metrics consistently outperforms traditional methods,
achieving state-of-the-art performance with an R of 0.8641
and an MSE of 22.41. The success of the proposed approach
suggests that it could be a valuable tool for advancing solar
power generation prediction in rural areas like Alice Springs,
Australia, by integrating the seasonal cycles of First Nations
for improved accuracy and performance. In future work, the
applications of the FNS-Metrics and Conv-Ensemble frame-
work to other regions and renewable energy sources by further
refine the models to enhance their generalizability. In addi-
tion, improving modelling techniques to address the higher
error rates observed during periods of rapid changes in solar
irradiance is essential for accurate solar power prediction.
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