DECARBONISING
HEAVY-DUTY ROAD
TRANSPORT

STATE OF THE ENABLING CONDITIONS

CONTENTS

ENABLING CONDITIONS	3
THREE KEYS TO ZERO-EMISSION ROAD TRANSPORT	4
ZERO-EMISSION VEHICLES	5
DRIVING EUROPE'S GREEN TRANSITION WITH ZERO- EMISSION TRUCKS AND BUSES	6
ZEV MARKET DEVELOPMENT	
ZERO-EMISSION VEHICLES	9
HDV CO2 TARGETS	11
SUMMARY	12
CHARGING/REFUELLING INFRASTRUCTURE.	13
CHARGING INFRASTRUCTURE	14
ENABLING CONDITIONS	15
CO2 TARGETS AND INFRASTRUCTURE	17
DEPOT CHARGERS INCENTIVES	18
SUMMARY	19

EV COST PARITY	20
COST PARITY	21
TOTAL COST OF OWNERSHIP (TCO)	22
ZEV COST PARITY	23
ZLEV PURCHASE INCENTIVES	24
EUROVIGNETTE IMPLEMENTATION	25
ETS2 - INDISPENSABLE FOR HDV ROAD TRANSPORT	26
SUMMARY	27
CONCLUSIONS	28
HD BEV STATUS OF ENABLING CONDITIONS	29
ZEV TRANSITION: QUO VADIS?	30
CONCLUSIONS	31
GLOSSARY OF TERMS	32

ENABLING CONDITIONS

THREE KEYS TO ZERO-EMISSION ROAD TRANSPORT

Commitment to climate-neutrality by 2050 at the latest By 2040 all new commercial vehicles sold will have to be **fossil-free** FUNCTIONAL, **RELIABLE AND EFFICIENT VEHICLES** Clean electricity, hydrogen and low-/zero-carbon fuels are crucial for the transition Vehicle deployment will only be successful if **infrastructure** is rolled out **CARBON-NEUTRAL ROAD** rapidly **TRANSPORT** Commitment of all **TRUCK POLICY** stakeholders/policy **CHARGING FRAMEWORK** makers must match AND REFUELLING TO ENABLE ambition level set for INFRA-**AND DRIVE** vehicle industry STRUCTURE **TRANSITION** Manufacturers ready to support roll-out by collaborating with public

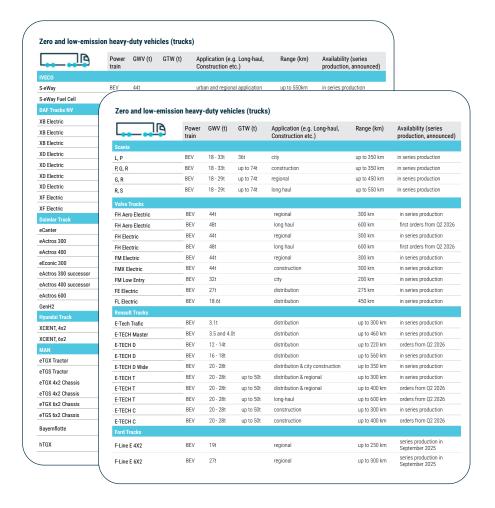
Zero-emission vehicles will have to become **best option** and preferred choice of transport operators

Enabling **policy framework** is indispensable **to shift key cost factors**

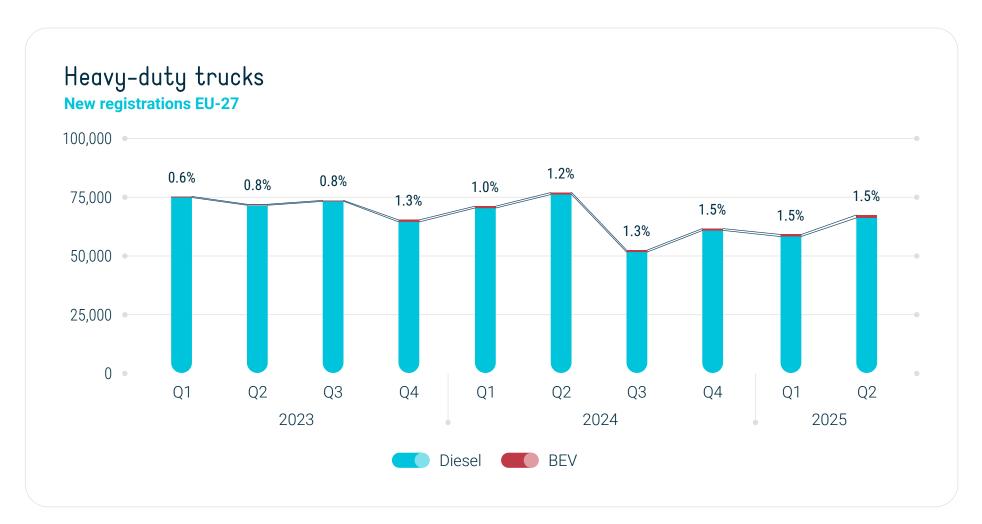
In line with science, an **ambitious carbon price**, which gradually increases to significantly higher levels than today is crucial to drive the deployment of zero-emission technologies

Decarbonisation requires
clear focus and all
resources to be devoted
exclusively to reaching
target as soon as possible

and private stakeholders

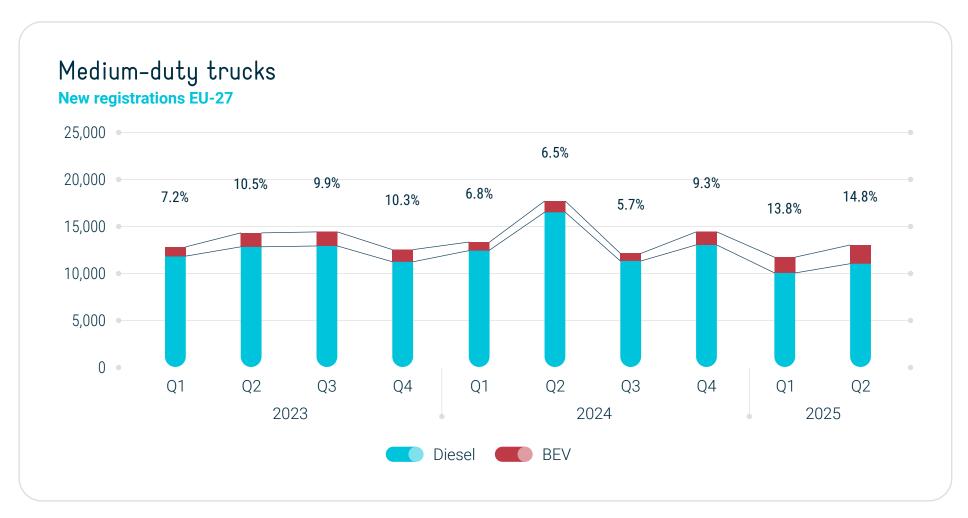

ZERO-EMISSION VEHICLES

DRIVING EUROPE'S GREEN TRANSITION WITH ZERO-EMISSION TRUCKS AND BUSES



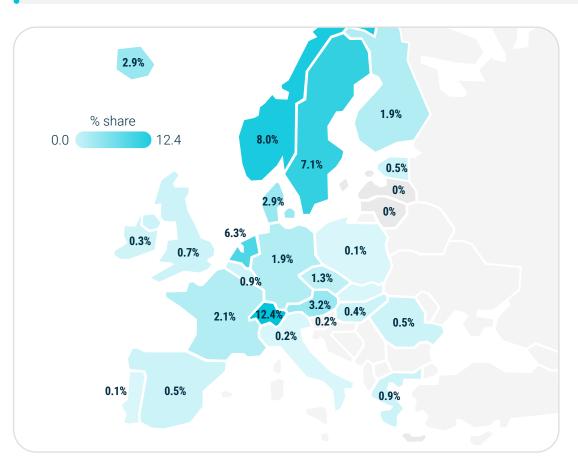
- Europe's truck and bus manufacturers are leading road transport's transition to climate neutrality by introducing state-of-the-art zeroemission vehicles.
- 45+ zero-emission truck models now available from city deliveries to long-haul transport.
- 20+ zero-emission bus models on the market powering clean, quiet mobility in cities & beyond.

Source: https://www.acea.auto/news/driving-europes-green-transition-with-zero-emission-trucks-and-buses/



ZEV MARKET DEVELOPMENT

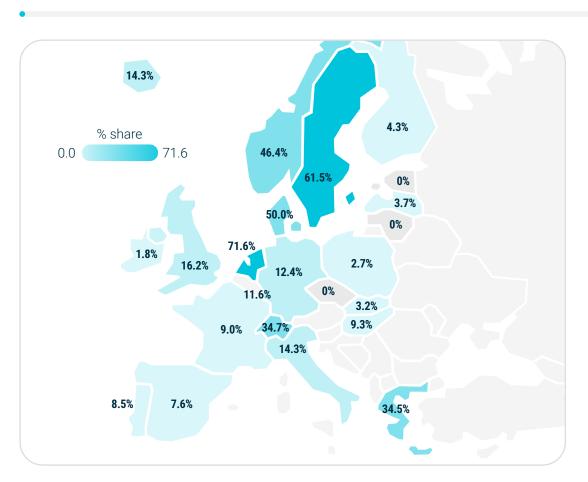
Note: Other powertrains excluded (<2.3% of HDV, <3.6% of MHDV).


ZEV MARKET DEVELOPMENT

Note: Other powertrains excluded (<2.3% of HDV, <3.6% of MHDV).

ZERO-EMISSION VEHICLES

HEAVY-DUTY TRUCKS, NEW REGISTRATIONS H1 2025



Source: http://www.acea.auto/zero-emission-tracker

- The market share of zero-emission medium- and heavy-duty trucks was just 3.6% in H1 2025 (up from 2.1% in 2024)
- Nearly 80% of all new BEV heavyduty trucks were registered in five member states
 - Sweden (7.1%)
 - Netherlands (6.3%)
 - Austria (3.2%)
 - o Denmark (2.9%)
 - o France (2.1%)
- Switzerland (12.4%) and Norway (8.0%) outperform EU member states

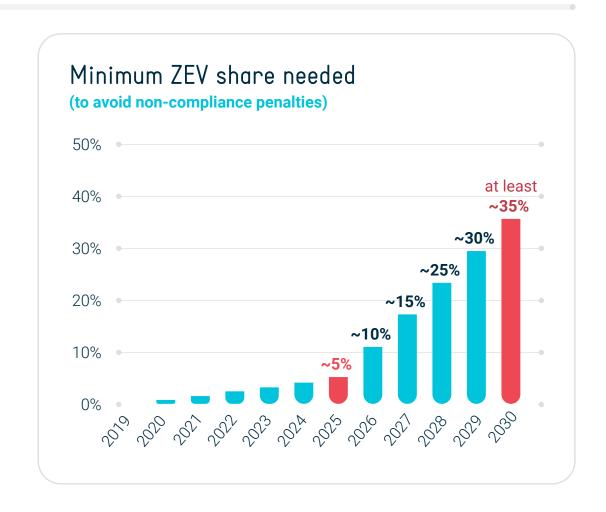
ZERO-EMISSION VEHICLES

MEDIUM-DUTY TRUCKS, NEW REGISTRATIONS H1 2025

- The market share of zero- emission medium- and heavy- duty trucks was just 3.6% in H1 2025 (up from 2.1% in 2024)
- BEV shares reached 14.4%
 - Netherlands (71.6% = 669 BEVs)
 - Sweden (61.5% = 292 BEVs)
 - Denmark (50.0% = 204 BEVs)
 - Greece (34.5% = 41 BEVs)
- Medium-duty trucks account for ~1/5 of the heavy-duty market volume

Source: http://www.acea.auto/zero-emission-tracker

HDV CO2 TARGETS


NECESSARY ZEV TRAJECTORY

2030 targets require rapid ZEV uptake

- ~400,000 **ZEV** in operation by 2030
 - Total fleet ~6.2 million (HDV >3.5t)
- ~100,000 ZEV registered annually
 - >1/3 of annual registrations

High non-compliance fines

• €4,250 per g CO2/ tkm x number of registered vehicles

SUMMARY

Market uptake of HD zero-emission vehicles [H1 2025] currently is

- **Too slow** (3.6% ZEV)
- Concentrated on just a few use cases
- Highly fragmented in just a few member states (Sweden, Netherlands)
- Two non-EU countries, Switzerland and Norway outperform EU member states (because of favourable enabling conditions and coherent policies)

Annual growth rates >50% needed to make 2030 CO2 targets achievable

CHARGING/REFUELLING INFRASTRUCTURE

CHARGING INFRASTRUCTURE

(PRIVATE) DEPOT CHARGING

No data available/ Not regulated

(SHARED-PRIVATE) DEPOT CHARGING

No data available/ Not regulated

PUBLIC CHARGING

Dedicated HDV charging

AFIR targets (Art. 4)

- Member states reporting (2027)
- Commission/ European Observatory (EAFO) data will become available by ~Q3/Q4 2025

HDV-accessible charging

AFIR targets LDV (Art. 3)/ HDV (Art. 4)

- ACEA data based on EY survey
 - ACEA zeroemission tracker

ENABLING CONDITIONS

HDV CHARGING INFRASTRUCTURE

- Very limited visibility about charging infrastructure suitable for heavy-duty vehicles; no official figures available
- Several independent surveys (public infrastructure) conclude:
 - ACEA (based on EY survey, May 2025): ~1,000 HDV-suitable chargers (350 kW+) in 12 countries (incl. CH, UK)
 - o IRU (2025): ~120 dedicated HDV chargers in EU-27
 - Milence (July 2025) up to 1,100 dedicated high-power truck charging connectors in 14 countries (incl. CH, UK)
- ~500 dedicated HDV public chargers needed EVERY MONTH until 2030 to power the required ZEV fleet

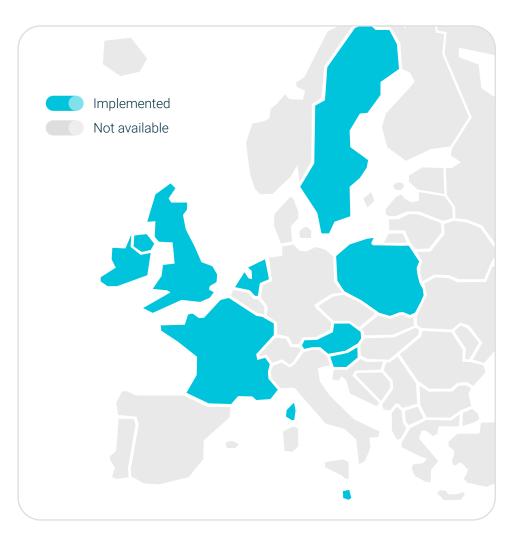
ENABLING CONDITIONS

HDV CHARGING & H2 REFUELLING INFRASTRUCTURE

	Chargers ≥350 kW (verified)	Chargers ≥350 kW (tbc)	Total	HRS (verified)	HRS (tbc)	Total
BE	53	73	126	1	2	3
СН	10	10	20	2	3	5
DE	120	-	120	34	-	34
DK	3	15	18	1	-	1
ES	4	20	24	-	-	-
FR	53	79	132	2	4	6
UK	26	33	59	-	-	-
IT	5	14	19	-	-	-
LU	1	-	1	-	-	-
NL	38	114	152	10	3	13
PL		4	4	1	2	3
SE	140	176	316	2	-	2
Total	453	538	991	53	14	67

has not been analysed.

Source: ACEA (based on EY survey)


CO2 TARGETS AND INFRASTRUCTURE

NECESSARY CHARGING/REFILLING INFRASTRUCTURE

CO2 target 2030			-45%
Zero-emission vehicles needed on EU roads (minimum)			~400,000
	Battery-electric vehicles		~330,000
	Hydrogen-powered vehicles		~70,000
Infrastructure			
H2)	Dublishy accessible	Total	at least 50,000
	Publicly accessible charging points	of which are MCS	~35,000
\	Hydrogen refilling stations	6 tons/day	at least 700
		2 tons/day	~2,000

- Meeting the 2030 CO2-targets requires ~400,000 ZEVs in operation
- To enable their operation, these vehicles will require
 - ~50,000 publicly accessible charging points suitable for HDVs
 - Including ~35,000 MCScapable chargers
 - ~700 H2 refilling stations (with 6t/day capacity)
- In addition, semi-public and private depot chargers are needed

DEPOT CHARGERS INCENTIVES

- Depot charging is an essential prerequisite for ZEV deployment
- Depending on use case, ~80% of HDV charging happens at depots
- Several member states provide incentives for the rollout of depot charging
 - E.g. Austria, France, Ireland, Netherlands, Poland, Sweden, Slovenia, UK
- The current eHDV fleet shows a "return to depot" behaviour
 - o If charging in depots should also dominate in other segments, transport and logistics patterns will have to change so that vehicles operate shorter legs in between depots only. With current operating way, charging away from home is needed when passing ~20% of the fleet

Source: IRU 2025

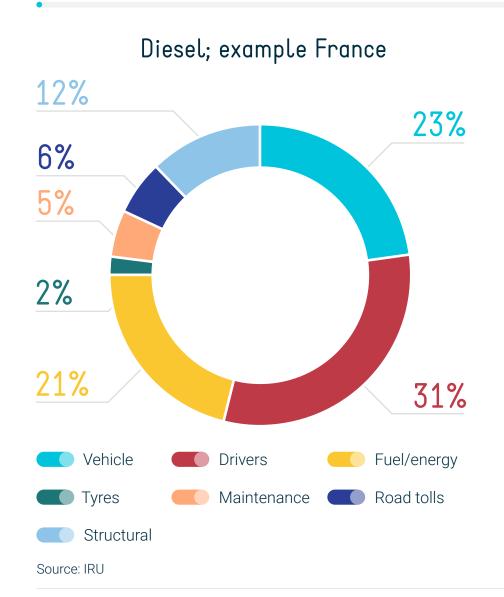
SUMMARY

Despite ongoing efforts by many stakeholders, there is a **clear infrastructure gap towards 2030**

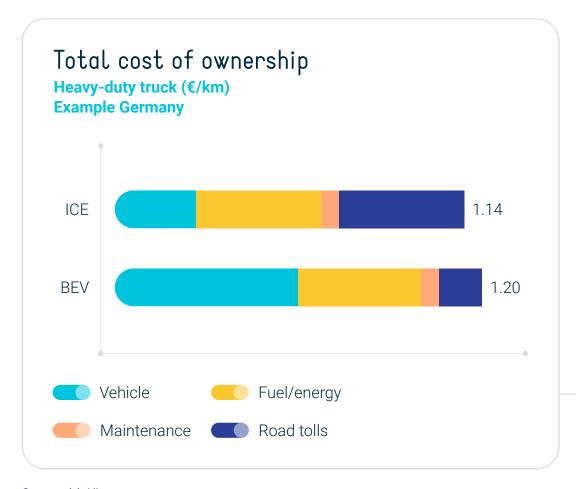
Most critical elements include:

- publicly accessible chargers dedicated for HDVs
- MCS chargers
- grid access for public and depot chargers
- charging price, especially fast charging is often more expensive than diesel
- H2 refuelling stations suitable for HDV
- H2 price and availability

ZEV COST PARITY


COST PARITY

- HDV road transport is a B2B market! Achieving cost parity for zero-emission vehicles is essential to enable the transition
- Without robust business cases across a wide range of use cases and member states the ZEV market uptake will remain insufficient
- A wide range of policy measures are needed to support competitive Total Cost of Ownership (TCO) for ZE HDVs
 - CO2-differentiated road user charges, favourable taxation for renewable fuels, hydrogen and electricity, ETS-2, competitive charging prices, vehicle-related regulations (e.g. Weights & Dimensions Directive), demand-side measures (incentives, public procurement), etc


TOTAL COST OF OWNERSHIP (TCO)

TCO vary significantly for different use cases and countries

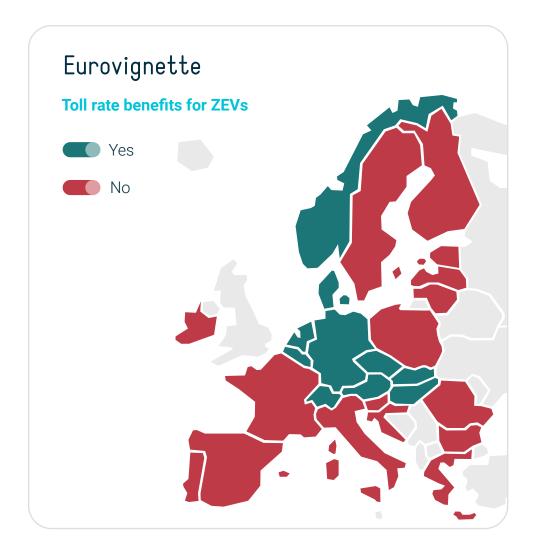
- Main categories include:
 - Drivers
 - Vehicles
 - Fuels
 - Tolls
 - Others
- Although important, vehicle costs are only one element of the TCO
- Fuel and driver costs have a similar or higher share
- TCO are also not considering revenues, but payload parity is essential for revenues

ZEV COST PARITY

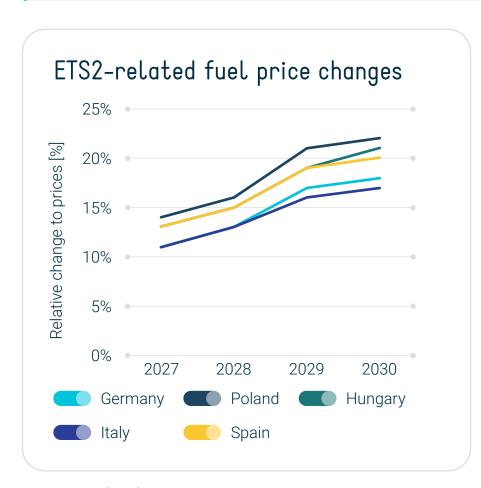
- TCO gap differs significantly for different use cases and member states
- Currently, zero-emission trucks are not yet competitive in many use cases and member states

Assumptions: 40t tractor, 90,000 km/ year, upfront costs €110,000 for ICE, €260,000 for BEV, Diesel ~€1.52/l, charging price €0.39/kWh

Source: McKinsey


ZLEV PURCHASE INCENTIVES

Source: IRU 2025


- ZLEV purchase incentives for heavyduty vehicles are provided in several member states
 - E.g. Austria, Belgium, France, Hungary, Ireland, Netherlands, Poland, Sweden, Slovenia, UK
- While they can effectively support the ZEV market uptake they are often
 - Administrative burdensome
 - Not sustainably long-term
 - Disruptive to regular fleet renewal investments
 - Not coordinated on a European level

EUROVIGNETTE IMPLEMENTATION

- CO2-based road user charges with full exemption for zero-emission vehicles are one of the most effective, targeted measures to enable ZEV cost parity
- However, on its own it is insufficient to fully reduce the TCO gap between ZEVs and conventional vehicles
 - Only in Germany, Austria, and Switzerland discount levels are currently high enough to drive ZEV demand
- Currently, only two member states fully exempt ZEVs from road tolls
 - Belgium and Germany
- Ten member states apply reduced toll rates for ZEVs
 - Austria, Bulgaria, Czechia, Denmark, Hungary, Latvia, Luxembourg, the Netherlands, Slovakia, Sweden

ETS2 – INDISPENSABLE FOR HDV ROAD TRANSPORT

- The ETS2 is indispensable for the decarbonisation of heavy-road transport
- Significant uncertainties persist about its implementation and the expected impact on fuel prices
- Current price projections for 2027 range from €55 to €92/t
 - Expected to lead to a 10% 15% increase of fuel prices
 - However, these are considered too low to close the TCO gap and actively drive the transition

Source: VEYT (2025)

SUMMARY

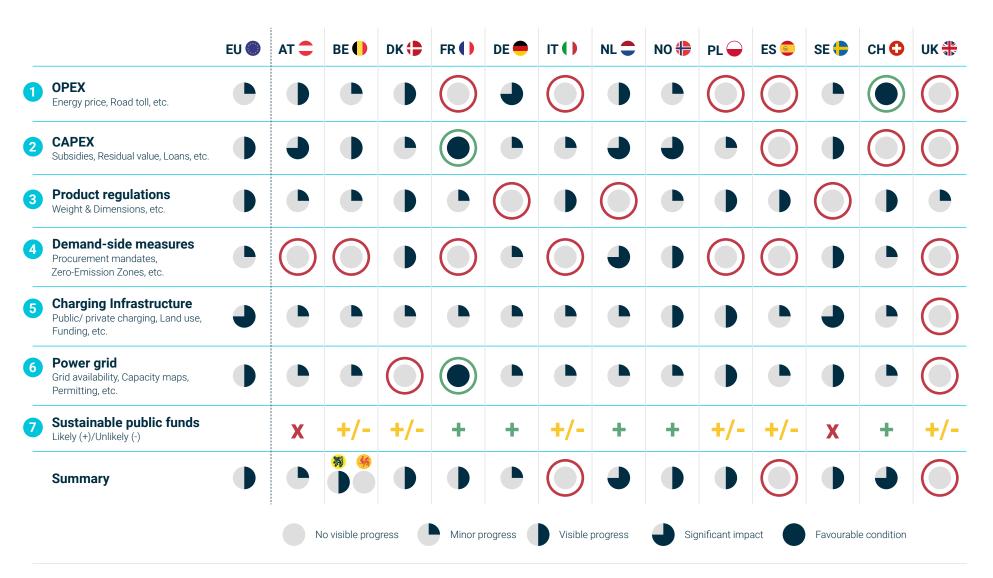
Today, TCO of zero-emission trucks are not yet competitive in most member states and use cases

Important cost parameters remain highly dependent on favourable policy measures

Key elements of the necessary policy framework are still missing

 Payload parity is missing because of the stalled Weights
 & Dimensions Review

Partially favourable conditions currently only for a few applications in a few countries


 E.g. Switzerland, Norway, Netherlands

CONCLUSIONS

HD BEV STATUS OF ENABLING CONDITIONS

SELECTED MARKETS [H1 2025]

ZEV TRANSITION: QUO VADIS?

VEHICLES

HDV CO2 targets

- 2025/ 2030/ 2035/ 2040
- Globally most ambitious and comprehensive targets, including significant non-compliance penalties
- Review

INFRASTRUCTURE

AFIR

- Minimum targets 2025/ 2027/ 2030
- Pending MS implementation
- No requirements for depot charging
- Public charging beyond AFIR (e.g. Milence)
- Insufficient H2 availability
- Review 2026

Power grids

- Insufficient transparency about capacities
- Queuing and connection issues (firstcome- first-serve)
- Investment frames from NRAs and lack of anticipatory investments

COST PARITY

Eurovignette

Fragmented implementation and insufficient level

ETS-2

Pending implementation

Weights & Dimensions Directive

Stalled in Council

Energy Taxation Directive

Stalled in Council

MCS Standard

Delayed

Fleet renewal incentives

Insufficient and fragmented

ZE zones and similar measures

Fragmented

Public procurement requirements to support ZEVs

CONCLUSIONS

Several key conditions are still missing to enable a swift and broad market uptake of zero-emission vehicles

These missing elements severely limit the ZEV market

Unless they are addressed urgently, the **2030 CO2 targets** for HDVs will not be achievable

www.acea.auto

GLOSSARY OF TERMS

ZEV	Zero-emission vehicle
HDV	Heavy-duty vehicle
OEM	Original Equipment Manufacturer
BEV	Battery-electric vehicle
CO2	Carbon dioxide
ETS2	Emissions Trading System 2
HRS	Hydrogen Refuelling Station

MCS	Megawatt Charging Systems
ccs	Combined Charging Systems
GWV	Gross Weight of Vehicle
MS	Member States
AFIR	Alternative Fuels Infrastructure Regulation
H2	Hydrogen
тсо	Total Cost of Ownership

acea

REPRESENTS EUROPE'S 16 MAJOR CAR, VAN, TRUCK, AND BUS MANUFACTURERS

ACEA

European Automobile
Manufacturers' Association
+32 2 732 55 50
info@acea.auto

www.acea.auto

x.com/ACEA_auto

linkedin.com/company/acea

youtube.com/c/ACEAauto