Rinnovabili • STEM®- CST

STEM®- CST, quando il solare a concentrazione incontra la sabbia

STEM®- CST combina il solare a concentrazione con soluzioni innovative di accumulo termico, basate sulla sabbia, elemento chiave delle tecnologie brevettate Magaldi Green Energy

STEM®- CST

L’energia solare a concentrazione rappresenta una delle soluzioni più promettenti per ridurre l’uso dei combustibili fossili e la dipendenza da fonti energetiche non rinnovabili delle industrie. Il calore rappresenta circa il 45% delle emissioni legate all’energia e più del 50% del consumo globale di energia di tutti i settori. Le applicazioni industriali rappresentano la quota maggiore del consumo di calore, pari al 40% della domanda totale di calore, e circa il 70% di questa domanda è soddisfatta da fonti fossili (Fonte: NET-Zero Heat, LDES-McKINSEY, 2022). La tecnologia STEM®- CST – Solar Thermo Electric Magaldi risponde alle esigenze di decarbonizzazione del settore industriale grazie ad avanzati sistemi di conversione della radiazione solare in energia termica, integrati a soluzioni di energy storage per rilasciare l’energia all’occorrenza anche in assenza della fonte solare.

Sistemi per decarbonizzare le industrie

La tecnologia Magaldi STEM®- CST, sviluppata e brevettata a livello internazionale dal Gruppo Magaldi, può rappresentare un’alternativa affidabile ed ecosostenibile per la generazione di energia pulita, nel rispetto delle più stringenti normative ambientali. Il sistema STEM®- CST è, infatti, in grado di rilasciare energia termica in un opportuno range di temperature, alle condizioni di processo richieste dalle industrie energivore (carta, food & beverage, chimica, plastica), ad oggi ancora fortemente dipendenti dal gas per la produzione di calore. Nel sistema Magaldi, a differenza di altre tecnologie, il ricevitore solare, lo scambiatore di calore e il sistema di accumulo termico sono integrati tutti all’interno di un unico dispositivo.

STEM®-CST: sole e sabbia per produrre calore verde

Il sistema Magaldi STEM®- CST è costituito da un campo specchi primari (eliostati) e da un riflettore secondario (beam-down), collocato al sopra di un ricevitore solare, posizionato a terra, che funge da batteria di accumulo termico.

Il campo specchi capta l’energia solare, la riflette sullo specchio secondario che la concentra, a sua volta, nel ricevitore solare, all’interno del quale è presente un letto fluidizzato, costituto da particelle di sabbia come mezzo di accumulo termico. Grazie alle notevoli capacità di assorbimento dell’energia, il letto fluidizzato può essere riscaldato omogeneamente fino a temperature di 600° C ed è in grado di rilasciare vapore, attraverso scambiatori immersi nella sabbia, in range di temperatura e pressione variabile (250-500 °C e 10-40 bar). Tali caratteristiche rendono questo vapore ampiamente utilizzabile nei processi industriali, consentendo pertanto ai settori energivori di svincolarsi dall’utilizzo di fonti di natura fossile, nell’ottica degli obiettivi di decarbonizzazione Net-Zero.

leggi anche Le “batterie di sabbia” made in Italy al servizio dell’industria alimentare

Particelle solide VS sali fusi: temperature più elevate e materie più accessibili

Generalmente, le tecnologie del solare a concentrazione con accumulo termico utilizzano come mezzo di stoccaggio dell’energia i sali fusi. Magaldi prevede come mezzo di accumulo termico particelle solide granulari, come la sabbia, materiale economico e facilmente reperibile, che permette di ottenere diversi vantaggi. La sabbia può, infatti, lavorare sia a temperature inferiori a quelle dei sali fusi, soggetti a congelamento, sia raggiungere temperature più elevate. Il punto di fusione della sabbia silicea è, infatti, maggiore di 1200°C, mantenendo, pertanto, le sue caratteristiche termofisiche.  In particolare, le temperature più elevate consentono una maggiore capacità di utilizzo nel settore industriale. Inoltre, in uno scenario internazionale in cui il dibattito sul reperimento dei materiali critici per la transizione energetica è particolarmente centrale, la sabbia si colloca come un’opportunità funzionale e conveniente.

tecnologia STEM®- CST

Il percorso di ricerca del team Magaldi

Il primo modulo sperimentale del sistema STEM®- CST è stato realizzato e avviato a partire da giugno 2016, presso il presso il Polo Energetico Integrato di A2A Energie Future a San Filippo del Mela, in provincia di Messina (Sicilia). L’impianto sperimentale ha permesso di testare “sul campo”, con circa 12.000 ore di corretto funzionamento, la capacità del letto fluidizzato di immagazzinare e rilasciare energia sotto forma di vapore.

I risultati degli ultimi test sperimentali, pubblicati sulla rivista scientifica Energiessono recentemente stati presentati nel corso del SolarPACES 2023, evento leader mondiale per l’innovazione nel settore dell’energia solare a concentrazione, a Sydney in Australia. 

Frutto di un medesimo percorso di ricerca avviato circa 15 anni dal Gruppo Magaldi, in parallelo a STEM®- CST è stata sviluppata anche una nuova tecnologia MGTES – Magaldi Green Thermal Energy Storage – basata su un letto fluidizzato di sabbia, alimentato con carica elettrica, per la possibile integrazione con fonti energetiche rinnovabili alternative (PV e/o eolico), a supporto del settore industriale. La tecnologia MGTES è coperta da brevetto europeo e mondiale. L’impianto ha una vita utile di 30 anni ed è a impatto zero, perché si compone esclusivamente di materiali 100% riutilizzabili come sabbia silicea e acciaio. Nel marzo del 2023 Enel-X e il Gruppo Magaldi hanno avviato una collaborazione per la sperimentazione della tecnologia MGTES, per produrre vapore ad alta temperatura per l’azienda la I-Gi di Buccino,  produttrice di olii vegetali e fornitrice del gruppo dolciario Ferrero di Alba

About Author / La Redazione

Rinnovabili • Simulare i fenomeni termomeccanici

Simulare i fenomeni termomeccanici [Webinar]

SponsoredContenuto
Sponsorizzato

Martedì 18 giugno COMSOL terrà un seminario gratuito dedicato alla simulazione multifisica delle interazioni termomeccaniche

fenomeni termomeccanici

Come prevedere la tendenza di un materiale a cambiare di volume in risposta ad un cambiamento di temperatura all’interno di un sistema meccanico? Come valutare l’effetto sulle prestazioni di fenomeni termomeccanici come il riscaldamento Joule? Come modellare le possibili deformazioni indotte dal calore e studiarne le conseguenze sul comportamento meccanico di strutture solide?

Per tutte queste domande esiste una risposta “semplice”: la simulazione multifisica. Questo strumento d’analisi permette, a partire da un sistema complesso, di simulare i singoli aspetti (elettrici, meccanici, termici o chimici) e gli effetti della loro interazione. Nel dettaglio la simulazione multifisica permette di creare un modello matematico e analizzarlo minuziosamente con l’obiettivo di prevedere o convalidare il risultato del mondo reale. Evidenziando eventuali criticità e ottimizzando i progetti ancor prima della prototipazione. 

Nel settore delle energie rinnovabili (ma non solo) l’approccio risulta particolarmente valido per il comportamento meccanico di strutture solide dove la complessità dei fenomeni termomeccanici richiede necessariamente un’attenzione e una cura più elevate durante la fase progettuale. 

A spiegarne vantaggi e potenzialità è il nuovo webinar gratuito di COMSOL, una delle aziende leader nello sviluppo software di modellazione matematica. L’evento, in programma per il 18 giugno alle ore 14.30 permetterà ai partecipanti di comprendere come sia possibile analizzare le strutture meccaniche combinando tutti gli effetti fisici e le interazioni rilevanti. 

 Lo strumento principe è COMSOL Multiphysics®, uno dei software di modellazione più avanzati del settore, in grado simulare progetti, dispositivi e processi in ogni ambito tecnologico. Grazie al modulo dedicato alla Meccanica Strutturale, la piattaforma permette di analizzare la meccanica dei solidi, simulando il comportamento dei materiali, delle dinamiche, delle vibrazioni, dell’attrito ecc. all’interno di un unico modello e di un unico ambiente di modellazione.

Il modulo offre accoppiamenti multifisici integrati che includono anche gli aspetti termici, a partire dalle semplici condizioni operative di un dispositivo, per arrivare a fenomeni più complessi come l’effetto Joule. La piattaforma rende possibile, infatti, modellare la conduzione della corrente elettrica in una struttura, il successivo riscaldamento elettrico causato dalle perdite ohmiche e le sollecitazioni termiche indotte dal campo di temperatura.

Simulare i fenomeni termomeccanici

Per avere una panoramica completa delle possibilità durante il seminario i tecnici Comsol esamineranno i diversi meccanismi importanti da considerare in un modello termomeccanico. Come ad esempio il creep termico, ossia la deformazione anelastica che si verifica nel tempo quando un materiale è sottoposto a stress a una temperatura pari o superiore al 40% del punto di fusione. O ancora lo smorzamento termoelastico, che si verifica quando si sottopone un materiale a stress ciclico di compressione e di espansione. La deformazione ciclica crea variazioni locali di temperatura in grado a loro volta di produrre perdite meccaniche.

Il webinar passerà in rassegna vari casi di studio ed esempi di modelli, mostrando il software in azione e rispondendo in tempo reale a tutte le domande dei partecipanti.

Partecipa al seminario gratuito dedicato alla simulazione dei fenomeni termomeccanici registrandoti all’indirizzo  https://www.comsol.it/c/fvmd 

Rinnovabili •
About Author / Stefania Del Bianco

Giornalista scientifica. Da sempre appassionata di hi-tech e innovazione energetica, ha iniziato a collaborare alla testata fin dalle prime fasi progettuali, profilando le aziende di settore. Nel 2008 è entrata a far parte del team di redattori e nel 2011 è diventata coordinatrice di redazione. Negli anni ha curato anche la comunicazione e l'ufficio stampa di Rinnovabili.it. Oggi è Caporedattrice del quotidiano e, tra le altre cose, si occupa quotidianamente delle novità sulle rinnovabili, delle politiche energetiche e delle tematiche legate a tecnologie e mercato.


Rinnovabili • Decreto FER X

Decreto FER X, aste entro la fine dell’anno

Lo ha dichiarato il sottosegretario al MASE, Claudio Barbaro, ma l'iter del Decreto Fer X appare ancora indietro con i tempi

Decreto FER X
Foto di Ed White da Pixabay

Incentivi alle rinnovabili, la normativa in attesa

Il Decreto FER X è in dirittura d’arrivo e le prime procedure competitive del provvedimento potrebbero essere lanciate entro la fine del 2024. Questa perlomeno è la previsione avanzata dal sottosegretario al Ministero dell’Ambiente e della Sicurezza Energetica, Claudio Barbaro, durante un’interrogazione alla Camera. Rispondendo in X Commissione ad un quesito dell’onorevole Peluffo sui tempi di adozione del DM FER-X, Barbaro ha fatto chiarezza sui prossimi passi del provvedimento.

Lo schema, ha ricordato il sottosegretario, è stato trasmesso all’ARERA nel mese di aprile ai fini dell’acquisizione del parere. L’Authority dovrebbe far sapere la propria posizione in questi giorni per poi “passare la palla” alla Conferenza Unificata. A valle dell’acquisizione di quest’ultimo parere “sarà possibile procedere con la notifica formale del provvedimento in Commissione europea per la verifica dei profili di compatibilità con la disciplina in materia di Aiuti di Stato”.

Decreto FER X, quando arriva?

Il percorso, dunque, si prospetta ancora lungo ma il Sottosegretario rassicura gli animi spiegando che il MASE sta cercando di velocizzare i passaggi rimanenti. “Per accelerare […] il Ministero ha già avviato i colloqui con la Commissione con l’obiettivo di illustrare le principali novità introdotte dal meccanismo. Tra le innovazioni, rispetto al disegno attuale, il nuovo schema prevede infatti che il Sistema si faccia carico del rischio dovuto alle dinamiche inflattive, particolarmente accentuate nell’ultimo anno, in modo tale da rendere i corrispettivi riconosciuti più adeguati alla struttura di costo e alla sua evoluzione, riducendo così i rischi degli operatori“.

Il Decreto, ricordiamo, nasce per sostenere la produzione di energia elettrica da impianti rinnovabili “con costi vicino alla competitività di mercato”. Ossia fotovoltaici, eolici, idroelettrici e di trattamento dei gas residuati dai processi di purificazione. L’ultima bozza del decreto FER X riporta due modalità di accesso agli incentivi: quella diretta, riservata ai sistemi rinnovabili di taglia uguale o inferiore ad 1 MW per un massimo di 5 GW sviluppabili in Italia; quella tramite aste, nel caso di impianti di potenza superiore a 1 MW (e con contingenti differenziati per tecnologia che vanno da un 45 GW per il fotovoltaico allo 0,02 GW per i gas residuati).

Barbaro ha anche anticipato che per mitigare le problematiche relative all’operatività dei contratti alle differenze convenzionali, il Ministero ha provveduto a “ridisegnare la struttura dei pagamenti del contratto al fine di disincentivare l’offerta della capacità contrattualizzata a prezzi inferiori ai propri costi marginali”. Un intervento che permetterebbe al tempo stesso di “ridurre il rischio volume sostenuto dai titolari della medesima capacità“. Le prime aste? “Potranno essere bandite entro la fine dell’anno“, ha concluso il sottosegretario.

Rinnovabili •
About Author / Stefania Del Bianco

Giornalista scientifica. Da sempre appassionata di hi-tech e innovazione energetica, ha iniziato a collaborare alla testata fin dalle prime fasi progettuali, profilando le aziende di settore. Nel 2008 è entrata a far parte del team di redattori e nel 2011 è diventata coordinatrice di redazione. Negli anni ha curato anche la comunicazione e l'ufficio stampa di Rinnovabili.it. Oggi è Caporedattrice del quotidiano e, tra le altre cose, si occupa quotidianamente delle novità sulle rinnovabili, delle politiche energetiche e delle tematiche legate a tecnologie e mercato.


Rinnovabili • pcb ricarica

PCB per la ricarica dei veicoli elettrici (EVC)

SponsoredContenuto
Sponsorizzato

Il ruolo e l'importanza dei circuiti stampati nel mondo della ricarica dei veicoli elettrici

pcb ricarica

Il mondo dell’EV charging promette di cambiare il nostro modo di spostarci e di viaggiare e molte sono le tecnologie in gioco per raggiungere questo ambizioso obiettivo. L’elettronica svolge di certo un ruolo chiave, ma è necessario sviluppare prodotti ad hoc per questo segmento di mercato, che siano in grado di gestire picchi energetici, alte temperature, funzionalità molteplici e dimensioni ridotte. Molte di queste necessità devono essere soddisfatte nella progettazione di un circuito stampato (anche detto PCB) che permetterà di garantire funzionalità, affidabilità ed efficienza di una colonnina di ricarica. I PCB (Printed Circuit Boards) sono infatti fondamentali per consentire una ricarica affidabile e ad alta potenza e si sono evoluti parallelamente allo sviluppo di colonnine di ricarica sempre più performanti, di dimensioni più compatte e più leggere.

Diminuendo le dimensioni delle colonnine di ricarica, anche lo spazio dedicato ai PCB si è ridotto, portando i progettisti di circuiti stampati a studiare nuovi design che permettessero di ottenere le stesse prestazioni in dimensioni più contenute. In alcuni casi può essere sufficiente usare elementi più compatti, in altri lavorare sulla densità del circuito, oppure optare per un maggior numero di strati che possano ospitare tutte le funzionalità richieste, o ancora prestare particolare attenzione alla larghezza delle piste e alla distanza di isolamento.

I circuiti stampati dedicati al mondo dell’ev charging devono inoltre poter gestire correnti e tensioni elevate, che richiedono l’uso di materiali specifici e spesso di una grande quantità di rame che permetta di condurre considerevoli flussi di corrente e dissipare il calore in eccesso.

I circuiti stampati di un EV charger non sono solo sviluppati per garantire il fine ultimo della colonnina, la ricarica in sè, ma anche un’esperienza di acquisto adeguata. Se, da un lato, la crescente richiesta di tempi di ricarica più rapidi richiede una tecnologia dei PCB in grado di supportare operazioni di ricarica efficienti e ad alta potenza, dall’altro devono essere considerate anche tutte le interfacce che includono funzioni come touchscreen, applicazioni mobili, lettori di schede RFID e controlli intuitivi, tutti progettati con lo scopo di migliorare l’esperienza dell’utilizzatore di una colonnina di ricarica.

Attenzione alla sostenibilità nella progettazione di un PCB

Un’attenta progettazione di circuiti stampati può inoltre contribuire alla sostenibilità del prodotto finale, perché permette di ottimizzare spazio e materiali, riducendo gli sprechi. Studiare con attenzione il design del PCB permette di sfruttare il pannello in modo da ridurre la quantità di materie prime necessarie per produrre il circuito stampato ma anche delle risorse richieste per lavorarlo, come acqua, calore ed elettricità. La dimensione inferiore di un circuito stampato si tramuta anche in meno materiali di scarto nel caso in cui la scheda finale abbia dei difetti e debba quindi essere rottamata, e anche un imballaggio con dimensioni minori, peso minore con conseguente riduzione del costo di spedizione. I vantaggi sono quindi al contempo ambientali ed economici.

NCAB ha sviluppato delle linee guida che permettono di identificare i fattori che determinano il costo di un PCB  e supporta i propri clienti sin dalle prime fasi della progettazione per raggiungere obiettivi di sostenibilità comuni. 

I webinar sul circuito stampato di NCAB Group

Per questo motivo il Gruppo svedese mette a disposizione il know how dei propri tecnici attraverso un fitto programma di webinar gratuiti dedicati al circuito stampato. 

Giovedì 13 giugno 2024, in particolare, Jonathan Milione, FAE di NCAB Group Italy, terrà un webinar dal titolo “PCB affidabili per l’EVC​ – Opportunità, sfide e applicazioni in ambito ricarica EV“ a cui è possibile iscriversi da questo link https://attendee.gotowebinar.com/register/3189250463637126235

Parleremo di:

  • Evoluzione e sfide del settore dei veicoli elettrici
  • Metodi di ricarica e sviluppi tecnologici delle colonnine di ricarica
  • Soluzioni di design per PCB: sistemi di ricarica ad alta potenza

leggi anche Circuiti stampati più sostenibili, l’approccio virtuoso di NCAB Group

About Author / La Redazione