Rinnovabili • agro-fotovoltaico

Perché l’agro-fotovoltaico conviene in un clima sempre più caldo

Un team di scienziati dell'Università dell'Arizona dimostra come la combinazione di pannelli solari e coltivazioni possa creare una relazione reciprocamente vantaggiosa

agro-fotovoltaico
Credit: Greg Barron-Gafford.

 

I vantaggi dell’agro-fotovoltaico per energia, acqua e cibo

(Rinnovabili.it) – La vulnerabilità dei sistemi alimentari, energetici e idrici ai cambiamenti climatici rendono la ricerca della resilienza una sfida fondamentale. Per risolvere questo problema un gruppo di scienziati dell’Università dell’Arizona, negli Stati Uniti, ha cercato di definire i benefici partici in tutti e tre i campi sopracitati, realizzabili con l’agro-fotovoltaico. Il neologismo sottintende una sorta di ibrido tra agricoltura locale e infrastruttura fotovoltaica in grado di sfruttare il potenziale solare senza sottrarre terra utile alla produzione alimentare. Non si tratta di un concetto nuovo, ma il gruppo statunitense, guidato dal professore Greg Barron-Gafford ha adottato un nuovo approccio per valutare i vantaggi in termini di risorse idriche risparmiate, energia generata e cibo prodotto.

 

I ricercatori hanno realizzato un impianto sperimentale e monitorato le condizioni microclimatiche, la temperatura dei pannelli solari, l’umidità del suolo e l’utilizzo dell’acqua di irrigazione, assieme alla funzione ecofisiologica delle piante.

 

Il risultato? I benefici ottenibili da questa sorta di ecosistema artificiale sono diversi e sinergici. “In un sistema agrifotovoltaico”, afferma Barron-Gafford, “l‘ambiente sotto i moduli è molto più fresco in estate e rimane più caldo in inverno. Ciò non solo riduce i tassi di evaporazione delle acque di irrigazione nei mesi estivi, ma significa anche minore stress per le piante”. Le colture che crescono in condizioni di minore siccità richiedono meno acqua e, poiché a mezzogiorno non appassiscono facilmente a causa del calore, possiedono una maggiore capacità fotosintetica e crescono in modo più efficiente. “In combinazione con il raffreddamento localizzato dei pannelli fotovoltaici derivante dalla traspirazione dal “sottobosco” vegetativo, che riduce lo stress termico sui pannelli e ne aumenta le prestazioni, stiamo scoprendo una situazione win-to-win per la relazione cibo-acqua-energia”.

 

>>leggi anche Costi installazione ed LCOE fotovoltaico: continua il calo<<

 

Barron-Gafford e il suo team stanno attualmente lavorando con alcuni agricoltori e comunità agricole nella zona di Tucson, nella progettazione dei diagrammi di prova. I coltivatori aiutano gli scienziati a decidere su quali piante portare avanti l’esperimento, dai fagioli ai pomodori passando per bietole, cavoli, lattuga ed erbe aromatiche. L’attuale impianto sperimentale copre circa 165 metri quadrati, ma il prossimo anno verranno sviluppate strutture più grandi nelle aziende agricole in attività“Ciò che è super interessante”, spiega Barron-Gafford, “è che possiamo ridurre circa il 75% della luce solare diretta che colpisce le piante, ma c’è ancora così tanta luce diffusa sotto i pannelli che le piante crescono davvero bene”.

 

>>leggi anche Fotovoltaico galleggiante, il mondo ha installato oltre 1,3GW<<

Rinnovabili •
About Author / Stefania Del Bianco

Giornalista scientifica. Da sempre appassionata di hi-tech e innovazione energetica, ha iniziato a collaborare alla testata fin dalle prime fasi progettuali, profilando le aziende di settore. Nel 2008 è entrata a far parte del team di redattori e nel 2011 è diventata coordinatrice di redazione. Negli anni ha curato anche la comunicazione e l'ufficio stampa di Rinnovabili.it. Oggi è Caporedattrice del quotidiano e, tra le altre cose, si occupa quotidianamente delle novità sulle rinnovabili, delle politiche energetiche e delle tematiche legate a tecnologie e mercato.


Rinnovabili • Turbine eoliche ad asse verticale

Turbine eoliche ad asse verticale, efficienza migliorata del 200%

Dall'EPFL svizzero il primo studio che applica un algoritmo di apprendimento automatico alla progettazione della pale delle turbine VAWT

Turbine eoliche ad asse verticale
via depositphotos

Nuovi progressi per le turbine eoliche ad asse verticale

Un aumento dell’efficienza del 200% e una riduzione delle vibrazioni del 70%. Questi due dei grandi risultati raggiunti nel campo delle turbine eoliche ad asse verticale,  presso l’UNFoLD, il laboratorio di diagnostica del flusso instabile della Scuola Politecnica Federale di Losanna (EPFL). Il merito va a Sébastien Le Fouest e Karen Mulleners che, in un’anteprima mondiale hanno migliorato questa specifica tecnologia impiegando un algoritmo di apprendimento automatico.

leggi anche Ragni giganti in metallo per l’installare l’eolico offshore

Turbine eoliche VAWT, vantaggi e svantaggi

Si tratta di un progresso a lungo atteso dal comparto. Le turbine eoliche ad asse verticale o VAWT per usare l’acronimo inglese di “Vertical-axis wind turbines” offrono sulla carta diversi vantaggi rispetto ai classici aerogeneratori ad asse orizzontale. Ruotando attorno ad un asse ortogonale al flusso in entrata, il loro lavoro risulta indipendente dalla direzione del vento, permettendogli di funzionare bene anche nei flussi d’aria urbani. Inoltre offrono un design più compatto e operano a frequenze di rotazione più basse, il che riduce significativamente il rumore e il rischio di collisione con uccelli e altri animali volanti. E ancora: le parti meccaniche della trasmissione possono essere posizionate vicino al suolo, facilitando la manutenzione e riducendo i carichi strutturali.

Perché allora non sono la scelta dominante sul mercato eolico? Come spiega lo stesso Le Fouest, si tratta di un problema ingegneristico: le VAWT funzionano bene solo con un flusso d’aria moderato e continuo. “Una forte raffica aumenta l’angolo tra il flusso d’aria e la pala, formando un vortice in un fenomeno chiamato stallo dinamico. Questi vortici creano carichi strutturali transitori che le pale non possono sopportare“, scrive Celia Luterbacher sul sito dell’EPFL.

Energia eolica e algoritmi genetici

Per aumentare la resistenza, i ricercatori hanno cercato di individuare profili di inclinazione ottimali.  Il lavoro è iniziato montando dei sensori, direttamente su una turbina in scala ridotta, a sua volta accoppiata ad un ottimizzatore funzionante con algoritmi genetici di apprendimento. Di cosa si tratta? Di una particolare tipologia di algoritmi euristici basati sul principio della selezione naturale.

Quindi muovendo la pala avanti e indietro con angoli, velocità e ampiezze diverse, hanno generato una serie di profili di inclinazione. “Come in un processo evolutivo, l’algoritmo ha selezionato i profili più efficienti e robusti e ha ricombinato i loro tratti per generare una ‘progenie’ nuova e migliorata”. Questo approccio ha permesso a Le Fouest e Mulleners non solo di identificare due serie di profili di passo che contribuiscono a migliorare significativamente l’efficienza e la robustezza della macchina, ma anche di trasformare la più grande debolezza delle turbine eoliche ad asse verticale in un punto di forza. I risultati sono riportati su un articolo recentemente pubblicato sulla rivista Nature Communications.

leggi anche Il primo parco eolico galleggiante d’Italia ottiene l’autorizzazione

Rinnovabili •
About Author / Stefania Del Bianco

Giornalista scientifica. Da sempre appassionata di hi-tech e innovazione energetica, ha iniziato a collaborare alla testata fin dalle prime fasi progettuali, profilando le aziende di settore. Nel 2008 è entrata a far parte del team di redattori e nel 2011 è diventata coordinatrice di redazione. Negli anni ha curato anche la comunicazione e l'ufficio stampa di Rinnovabili.it. Oggi è Caporedattrice del quotidiano e, tra le altre cose, si occupa quotidianamente delle novità sulle rinnovabili, delle politiche energetiche e delle tematiche legate a tecnologie e mercato.