Rinnovabili • delfanti v2g

Delfanti: ecco i primissimi test sulla V2G

RSE, Nissan ed ENEL X hanno attivato recentemente la prima sperimentazione del sistema vehicle-to-grid (V2G), la tecnologia per la ricarica bidirezionale per veicoli elettrici. Abbiamo chiesto a Maurizio Delfanti, AD di RSE, quali sono i primi risultati dei loro test.

delfanti v2g

 

 

(Rinnovabili.it) – Il 24 maggio è stata inaugurata a Milano la prima sperimentazione italiana sui servizi avanzati del vehicle-to-grid, la cosiddetta V2G, la tecnologia che consente alle autovetture elettriche di immagazzinare e restituire energia alla rete, al fine di stabilizzarla.

Si tratta di un sistema bidirezionale con immense potenzialità se immaginiamo il futuro delle città basato sulle reti intelligenti, sulla produzione di energia distribuita da fonti rinnovabili, su sistemi IoT.

 

Il concetto su cui si basa V2G è molto semplice in quanto nasce da un’intuizione: perché non utilizzare l’energia presente nella batteria di una vettura elettrica mentre è parcheggiata e collegata ad una colonnina di ricarica? Immaginando un futuro, neanche tanto lontano, in cui il numero delle auto elettriche collegate alle colonnine sarà elevato, il parco batterie di bordo potrà davvero costituire un fattore di stabilità della rete ed un ottimo sistema per stoccare l’energia prodotta da fonte rinnovabile.

Su questi presupposti è partita la sperimentazione grazie ad un accordo tra RSE, Nissan ed ENEL X per raccogliere dati e produrre algoritmi che possano rendere ulteriormente intelligente e performante il sistema. L’obiettivo, così sfidante, è basato sulla realizzazione di una microrete sperimentale, presso la sede milanese di RSE, e l’utilizzo quotidiano di due Nissan Leaf. Una di queste vetture è utilizzata personalmente da Maurizio Delfanti, AD di RSE.

 

Prof. Delfanti, lei ha avuto l’opportunità di provare personalmente, tra i primi in Italia, il sistema di ricarica V2G. Ed è un test particolarmente realistico in quanto ha in  prova una vettura Nissan LEAF per la percorrenza quotidiana della tratta ufficio / abitazione. Si tratta di una testimonianza per noi doppiamente interessante, sia perché riguarda una tecnologia particolarmente innovativa, sia perché lei è un tecnico e può meglio di altri fornirci un feed back realistico del suo effettivo funzionamento. Partiamo dall’inizio, in cosa consiste la tecnologia V2G per la ricarica dei  veicoli elettrici?

Prelevare energia dalla rete per caricare le batterie di un veicolo elettrico, oppure restituire parte dell’energia accumulata a fronte di un comando della rete stessa. Ecco che cosa permette di fare la tecnologia che sta alla base del Vehicle-to-grid (V2G) e del Vehicle-to-Home (V2H), due diverse applicazioni (dette nel complesso V2x) che si differenziano qualora il comando provenga da un operatore di rete che si vuole approvvigionare di servizi per il Sistema Elettrico o da un sistema di gestione domestica dell’energia, per aumentare la quota di autoconsumi di un utente dotato di un  proprio impianto fotovoltaico.

 

Un sistema di ricarica V2x consta di un inverter di potenza di tipo bidirezionale che si accoppia lato auto direttamente ai poli positivo e negativo della batteria del veicolo (300-500 Volt) e lato rete domestica in bassa tensione (230 V).  In funzione dei comandi che riceve da un operatore di rete o dall’abitazione, l’inverter bidirezionale o preleva energia dalla rete per caricare la batteria alla pari di una comune colonnina di ricarica o preleva energia dalla batteria per mandarla in rete alla pari di un qualunque generatore (come ad esempio i sistemi FV).

 

Immagine_11

 

Lei è il responsabile del centro RSE dove è stata allestita l’infrastruttura sperimentale V2G. Da un punto di vista dell’impiantistica si tratta di un allestimento più complesso rispetto ad una stazione di ricarica convenzionale? E se sì, per quali motivi?

La complessità di installazione di un impianto V2G (e i costi) sono, come è intuitivo, superiori a quelli di una wallbox tradizionale. Invero, la complessità aggiuntiva è confinata all’interno delle colonnine stesse. Queste ultime infatti devono interfacciarsi con l’automobile in corrente continua, come le colonnine per la ricarica rapida; ma l’elettronica di potenza al loro interno deve poter gestire flussi di potenza bidirezionali. Le colonnine che supportano il V2G saranno comunque dispositivi commerciali, che si integrano con il resto dell’impianto in corrente alternata come le colonnine tradizionali. L’unica accortezza è quella di dimensionare correttamente l’impianto, tenendo conto della bidirezionalità dei flussi di potenza, ad esempio nella scelta dei dispositivi di misura e di protezione.

 

Se pensiamo al caso domestico, il tutto è assimilabile alla installazione di un sistema di accumulo, in quanto presuppone l’esistenza di un contatore allo scambio con la rete pubblica e di un contatore che misura l’energia scambiata con l’auto. Quindi, direi un livello di complessità a cui gli utenti finali che hanno già un impianto FV o un accumulo sono in qualche modo abituati.

 

v2g

 

Come sono stati ripartiti, in questa fase sperimentale, i ruoli con i vostri partner: Nissan ed ENEL X?

La collaborazione tra RSE, Nissan ed EnelX copre tutte le aree di interesse di questa sperimentazione. Nissan ha infatti fornito due vetture Leaf (una è quella che al momento guido io), e ci assiste nel monitoraggio delle auto, dandoci la possibilità di acquisire le misure provenienti dal motore e dalle batterie, sia durante la guida che durante la ricarica. EnelX ha invece fornito le due colonnine di ricarica bidirezionale, che si interfacciano alla Test Facility di RSE attraverso una piattaforma basata sul cloud, gestita da EnelX stessa.

RSE infine si occupa dell’esperimento vero e proprio: vengono infatti analizzati diversi casi di utilizzo delle auto, da quello di una flotta aziendale a quello di un’automobile privata (qui la cavia sono io…), verificando i potenziali benefici derivanti dall’erogazione di servizi V2G, mediante l’utilizzo di algoritmi di gestione del parco auto sviluppati da RSE stessa.

 

E veniamo alle sue esperienze e valutazioni dirette: è circa un mese e mezzo che lei utilizza la Leaf ricaricandola con il sistema V2G. Quali impressioni ne ha riportato? Le batterie della sua vettura hanno mai alimentato utenze nella sua abitazione o ufficio?

L’esperienza per l’utente è pensata per essere molto simile a quella di una ricarica tradizionale: l’applicazione per l’avvio della ricarica che sta sviluppando RSE richiede solo alcuni dati aggiuntivi, come ad esempio a che ora si pensa di prelevare l’auto e con che autonomia. Sarà poi il sistema di gestione del parco auto che programmerà opportunamente i profili di scambio dei singoli veicoli connessi, rispettando le richieste dell’utente e non scendendo mai sotto uno stato di carica richiesto.

In questo modo stiamo provando a testare sia i servizi Vehicle-to-Home, usando le auto per incrementare l’autoconsumo dell’energia prodotta dal proprio impianto fotovoltaico, sia i servizi Vehicle-to-Grid, scambiando potenza con la rete sulla base di segnali provenienti dal gestore della rete stessa. Se l’algoritmo di gestione è opportunamente disegnato, l’utente trova sempre la sua vettura carica al livello richiesto: questa è almeno la mia esperienza diretta (fino ad ora…).

 

Delfanti auto v2g

 

Con quale velocità crede possa diffondersi questa tecnologia in Italia e quali potrebbero essere i fattori strategici per una sua ancor più rapida affermazione?

Ovviamente, un solo veicolo elettrico connesso a un sistema V2G da solo non è sufficiente ad essere di aiuto al sistema elettrico. E’ necessario che ci sia una popolazione di auto elettriche (e quindi di batterie) per mettere a disposizione sia la potenza sia l’energia necessaria per dare un contributo significativo alla stabilità del sistema. La figura dell’aggregatore si dovrà sviluppare maggiormente ed adeguare per valorizzare anche questa nuova tecnologia, che permetterà una ulteriore penetrazione delle rinnovabili come tratteggiato nel PNIEC. RSE ritiene che questa sperimentazione sia un passo importante nella direzione giusta. Come anche importante sarà il processo di successiva sostituzione della flotta aziendale con auto full electric (o, per alcune esigenze, con auto ibride plug-in): anche qui, ci siamo dati un traguardo sfidante, a brevissimo termine (primo quarter del 2020). Se guardiamo ai fattori strategici a livello nazionale, a breve sarà pronto un  Decreto in materia (cd Decreto V2G, alle cui attività preparatorie RSE ha contribuito).

 

Ma ritengo che la mobilità sostenibile (che non è solo auto elettrica) sia una dimensione del PNIEC su cui si possa mostrare più coraggio: per esempio, immaginando una tariffa di ricarica particolarmente “leggera”, magari in cambio di una ricarica flessibile. Simili vantaggi si potrebbero ottenere sfruttando le reti quando sono meno cariche (ricarica in fascia F3); ma anche impiegando sin dall’inizio infrastrutture intelligenti, che permettano ai distributori di modulare la ricarica in una sola direzione (cd servizi V1G) e al sistema di valorizzare dinamiche di ricarica evolute, come appunto il V2G.

Rinnovabili •
About Author / Stefania Del Bianco

Giornalista scientifica. Da sempre appassionata di hi-tech e innovazione energetica, ha iniziato a collaborare alla testata fin dalle prime fasi progettuali, profilando le aziende di settore. Nel 2008 è entrata a far parte del team di redattori e nel 2011 è diventata coordinatrice di redazione. Negli anni ha curato anche la comunicazione e l'ufficio stampa di Rinnovabili.it. Oggi è Caporedattrice del quotidiano e, tra le altre cose, si occupa quotidianamente delle novità sulle rinnovabili, delle politiche energetiche e delle tematiche legate a tecnologie e mercato.


Rinnovabili • filiere delle rinnovabili

Decreto FERX, gli stakeholder chiedono più chiarezza e trasparenza

Il Ministero dell'Ambiente pubblica gli esiti della consultazione pubblica sul Decreto Ministeriale FER X, chiusa lo scorso settembre. Dai 46 soggetti partecipanti emerge l'esigenza di conoscere per tempo tutte le informazioni utili alla programmazione degli investimenti nelle rinnovabili. Chiesti chiarimenti sul processo autorizzativo e sulle tempistiche

decreto ferx
Foto di Rabih Shasha su Unsplash

Decreto FERX, nuovi spunti di riflessione

Servono maggiori informazioni sui coefficienti sul prezzo d’aggiudicazione, sui criteri di priorità, sulla documentazione per l’accesso al meccanismo e sulle tipologie di interventi ammessi. In particolare quando si tratta di progetti di “rifacimento” e “potenziamento”. Queste alcune delle principali richieste emerse dalla consultazione pubblica sul Decreto FERX. La scorsa estate il Ministero dell’Ambiente e della Sicurezza energetica aveva pubblicato lo schema del provvedimento per una raccolta di pareri da parte degli stakeholder, con l’obiettivo di condividerne le logiche. Oggi il MASE rende noti gli esiti di tale consultazione puntando i riflettori sugli spunti e le richieste emerse da parte dei 46 soggetti partecipanti. 

Gli esiti della consultazione pubblica

Ricordiamo che il Decreto FERX nasce con lo scopo di definire un meccanismo di supporto espressamente dedicato ad impianti a fonti rinnovabili con costi di generazione vicini alla competitività. Come? Tramite contratti CfD a valere sull’energia elettrica prodotta dagli impianti. Con un accesso diretto per quelli di taglia inferiore al MW, e tramite aste al ribasso per quelli di taglia uguale o superiore al MW. Ed è proprio su queste due modalità che arrivano le prime considerazioni.

Per la maggior parte dei soggetti che hanno risposto alla consultazione, il contingente di 5 GW per gli impianti FER ad accesso diretto non sarebbe sufficiente, soprattutto vista la grande attenzione che stanno ricevendo al livello di investimento i sistemi di piccola taglia.

Per quanto riguarda l’accesso tramite asta, invece, il parere generale condivide i contingenti individuati, che secondo l’ultima bozza pubblicata oggi sarebbero: per il fotovoltaico 45 GW; per l’eolico di 16,5 GW; per l’idroelettrico di 630 MW; per i gas residuati 20 MW. “Tuttavia – si legge nel documento del MASE – congiuntamente alla risposta positiva sono state proposte diverse modifiche (aumento di uno specifico contingente, creazione di nuovo contingente, meccanismi di riallocazione della potenza non assegnata, ridefinizione dei contingenti al fine di favorire lo sviluppo dei PPA, etc.)”. Tra gli spunti emersi c’è la proposta di contingenti separati tra il fotovoltaico a terra e sul tetto.

Proposti nuovi requisiti di accesso e tempistiche

In tema requisiti d’accesso, alcuni soggetti chiedono l’incremento della soglia di potenza per l’accesso diretto, l’aggiunta dei criteri ESG, la reintroduzione del requisito specifico che attesti la capacità finanziaria ed economica di chi partecipa al meccanismo del Decreto FERX.

Con riferimento ai tempi massimi individuati per la realizzazione degli interventi, la consultazione ha evidenziato un forte distaccamento con le aspettative degli operatori. Per quanto detto diversi soggetti propongono per una o più fonti l’innalzamento dei tempi previsti, chiedendo di tenere in considerazione parametri quali, la potenza e/o la tipologia d’intervento, l’ottenimento dei titoli autorizzativi, i tempi di realizzazione della connessione e quelli dovuti agli approvvigionamenti, che sottolineano, potrebbero oltretutto determinare un aumento dei costi, visto anche i meccanismi incentivanti”, si legge ancora nel documento.

Per i tempi di comunicazione della data d’entrata in esercizio dell’impianto, emerge nel complesso l’esigenza di un prolungamento, aggiungendo da più 60 giorni a 12 mesi. Viene anche evidenziata una certa contrarietà all’obbligo per gli operatori di impianti rinnovabili non programmabili che stipula un contratto CfD ad abilitarsi alla fornitura dei servizi di dispacciamento.

About Author / La Redazione

Rinnovabili • batteria ibrida al sodio

Dalla Corea la batteria ibrida al sodio che si ricarica in pochi secondi

Un gruppo di scienziati del KAIST ha sviluppato una batteria a ioni di sodio ad alta energia, ad alta potenza e di lunga durata

batteria ibrida al sodio
Foto di danilo.alvesd su Unsplash

Quando le batteria a ioni sodio incontrato i supercondensatori a ioni sodio

Arriva dalla Corea del Sud la prima batteria ibrida al sodio in grado di battere la tecnologia a ioni di litio a mani basse. Con ottime prestazioni lato di capacità di accumulo, potenza, velocità di carica e durata, come dimostra l’articolo pubblicato sulla rivista scientifica Energy Storage Materials (testo in inglese).

Nel 2020 le batterie a ioni sodio (Na+) hanno raggiunto prestazioni comparabili a quelle degli ioni di litio in termini di capacità e durata del ciclo in condizioni di laboratorio. Da allora il segmento ha continuato a macinare grandi progressi, spinto dall’esigenza globale di trovare una tecnologia di accumulo più economica delle ricaricabili al litio e meno dipendente dalle attuali catene di approvvigionamento dei materiali critici. L’ultimo grande risultato nel campo è quello segnato da un gruppo di scienziati del KAIST, il Korea Advanced Institute of Science and Technology.

leggi anche Batterie al sodio allo stato solido, verso la produzione di massa

Il team guidato dal professor Jeung Ku Kang del Dipartimento di Scienza e Ingegneria dei Materiali ha messo a punto una batteria ibrida agli ioni di sodio dalle prestazioni eccellenti e in grado di ricaricarsi in pochi secondi. Il segreto? Un’architettura che integra materiali anodici propri delle batterie con catodi adatti ai supercondensatori.

Batteria ibrida al sodio, prestazioni record

In realtà non si tratta di un approccio nuovo. Gli stoccaggi ibridi con Na+ sono emersi negli ultimi anni come una promettente applicazione nel campo dell’energy storage in grado di superare i punti deboli degli accumulatori a ioni di sodio più conosciuti.

Tradizionalmente questo metallo è usato e studiato in due tipi di dispositivi di stoccaggio: batterie e condensatori. Le prime, come spiegato poc’anzi, forniscono oggi una densità di energia relativamente elevata ma sono caratterizzate da una lenta cinetica di ossidoriduzione, che si traduce in una bassa densità di potenza e una scarsa ricaricabilità. I secondi invece hanno un’elevata densità di potenza dovuta all’accumulo di carica tramite rapido adsorbimento di ioni superficiali, ma una densità di energia estremamente bassa.

Tuttavia unire le due tecnologie impiegando catodi di tipo condensatore e degli anodi di tipo batteria, non ha dato subito i risultati sperati. La causa è da ricercare soprattutto nello squilibrio cinetico tra i due tipi di elettrodi.

Nuovi materiali per catodo e anodo

Per arginare il problema il team sudcoreano ha utilizzato sviluppato un nuovo materiale anodico con cinetica migliorata attraverso l’inclusione di materiali attivi fini nel carbonio poroso derivato da strutture metallo-organiche. Inoltre, ha sintetizzato un materiale catodico ad alta capacità e la combinazione dei due ha consentito lo sviluppo di un sistema di accumulo di ioni sodio che ottimizza l’equilibrio e riduce al minimo le disparità nei tassi di accumulo di energia tra gli elettrodi.

leggi anche Da CATL la prima batteria con degrado zero dopo 5 anni

La cella completamente assemblata supera per densità di energia le batterie commerciali agli ioni di litio e presenta le caratteristiche della densità di potenza dei supercondensatori. Nel dettaglio la batteria ibrida al sodio si ricarica rapidamente e raggiunge una densità di energia di 247 Wh/kg e una densità di potenza di 34.748 W/kg. Inoltre gli scienziati hanno registrato una stabilità del ciclo con efficienza Coulombica pari a circa il 100% su 5000 cicli di carica-scarica.

Rinnovabili •
About Author / Stefania Del Bianco

Giornalista scientifica. Da sempre appassionata di hi-tech e innovazione energetica, ha iniziato a collaborare alla testata fin dalle prime fasi progettuali, profilando le aziende di settore. Nel 2008 è entrata a far parte del team di redattori e nel 2011 è diventata coordinatrice di redazione. Negli anni ha curato anche la comunicazione e l'ufficio stampa di Rinnovabili.it. Oggi è Caporedattrice del quotidiano e, tra le altre cose, si occupa quotidianamente delle novità sulle rinnovabili, delle politiche energetiche e delle tematiche legate a tecnologie e mercato.


Rinnovabili • fotovoltaico materiale quantistico

Fotovoltaico, ecco il materiale quantistico con un’efficienza del 190%

Un gruppo di scienziati della Lehigh University ha sviluppato un materiale dotato di una efficienza quantistica esterna di 90 punti percentuali sopra quella delle celle solari tradizionali

fotovoltaico materiale quantistico
via Depositphotos

Nuovo materiale quantistico con un assorbimento solare medio dell’80%

Atomi di rame inseriti tra strati bidimensionali di seleniuro di germanio e solfuro di stagno. Questa la ricetta messa a punto dai fisici Srihari Kastuar e Chinedu Ekuma nei laboratori della Lehigh University, negli Stati Uniti, per dare una svecchiata alla prestazioni delle celle solari. Il duo di ricercatori ha così creato un nuovo materiale quantistico dalle interessanti proprietà fotovoltaiche. Impiegato come strato attivo in una cella prototipo, infatti, il nuovo materiale ha mostrato un assorbimento solare medio dell’80%, un alto tasso di generazione di portatori fotoeccitati e un’efficienza quantistica esterna (EQE) record del 190%. Secondo gli scienziati il risultato raggiunto supera di gran lunga il limite teorico di efficienza di Shockley-Queisser per i materiali a base di silicio e spinge il campo dei materiali quantistici per il fotovoltaico a nuovi livelli. 

leggi anche Fotovoltaico in perovskite, i punti quantici raggiungono un’efficienza record

L’efficienza quantistica esterna

Tocca fare una precisazione. L’efficienza quantistica esterna non va confusa con l’efficienza di conversione, il dato più celebre quando si parla di prestazioni solari. L’EQE rappresenta il rapporto tra il numero di elettroni che danno luogo a una corrente in un circuito esterno e il numero di fotoni incidenti ad una precisa lunghezza d’onda

Nelle celle solari tradizionali, l’EQE massimo è del 100%, tuttavia negli ultimi anni alcuni materiali e configurazioni avanzate hanno dimostrato la capacità di generare e raccogliere più di un elettrone da ogni fotone ad alta energia incidente, per un efficienza quantistica esterna superiore al 100%. Il risultato di Kastua e Ekuma, però, rappresenta un unicum nel settore.

Celle solari a banda intermedia

Per il loro lavoro due fisici sono partiti da un campo particolare della ricerca fotovoltaica. Parliamo delle celle solari a banda intermedia (IBSC – Intermediate Band Solar Cells), una tecnologia emergente che ha il potenziale per rivoluzionare la produzione di energia pulita. In questi sistemi la radiazione solare può eccitare i portatori dalla banda di valenza a quella di conduzione, oltre che direttamente, anche in maniera graduale. Come?  “Passando” per l’appunto attraverso stati di una banda intermedia, livelli energetici specifici posizionati all’interno della struttura elettronica di un materiale creato ad hoc. “Ciò consente a un singolo fotone di provocare generazioni multiple di eccitoni attraverso un processo di assorbimento in due fasi“, scrivono i due ricercatori sulla rivista Science Advances.

Nel nuovo materiale quantistico creato dagli scienziati della Lehigh University questi stati hanno livelli di energia all’interno dei gap di sottobanda ideali. Una volta testato all’interno di una cella fotovoltaica prototipale il materiale ha mostrato di poter migliorare l’assorbimento e la generazione di portatori nella gamma dello spettro dal vicino infrarosso alla luce visibile. 

La rivoluzione dei materiali quantistici

Il duo ha sviluppato il nuovo materiale sfruttando i “gap di van der Waals”, spazi atomicamente piccoli tra materiali bidimensionali stratificati. Questi spazi possono confinare molecole o ioni e gli scienziati dei materiali li usano comunemente per inserire, o “intercalare”, altri elementi per ottimizzare le proprietà dei materiali. Per la precisione hanno inserito atomi di rame tra strati di seleniuro di germanio e solfuro di stagno. “Rappresenta un candidato promettente per lo sviluppo di celle solari ad alta efficienza di prossima generazione – ha sottolineato Ekuma – che svolgeranno un ruolo cruciale nell’affrontare il fabbisogno energetico globale“.

Rinnovabili •
About Author / Stefania Del Bianco

Giornalista scientifica. Da sempre appassionata di hi-tech e innovazione energetica, ha iniziato a collaborare alla testata fin dalle prime fasi progettuali, profilando le aziende di settore. Nel 2008 è entrata a far parte del team di redattori e nel 2011 è diventata coordinatrice di redazione. Negli anni ha curato anche la comunicazione e l'ufficio stampa di Rinnovabili.it. Oggi è Caporedattrice del quotidiano e, tra le altre cose, si occupa quotidianamente delle novità sulle rinnovabili, delle politiche energetiche e delle tematiche legate a tecnologie e mercato.