Rinnovabili •

Mercato del carbonio: crescita e prospettive dopo Parigi

Ad oggi gli strumenti di carbon pricing valgono 50 miliardi di dollari. I gruppi economici spingono per un mercato del carbonio più esteso e globale

Mercato del carbonio arriva il penultimo sì_

 

(Rinnovabili.it) – Nell’ultimo anno e mezzo, Portogallo e Messico hanno introdotto una carbon tax, la Corea del Sud ha lanciato un mercato del carbonio tra i più grandi del mondo, la California e il Quebec hanno unito i rispettivi sistemi di cap-and-trade e attendono l’adesione dell’Ontario.

Nel frattempo, la Cina ha deciso di passare dai suoi sette mercati locali del carbonio ad un sistema di scambio nazionale già nel 2016. Nel 2018, inoltre, anche il Cile anche introdurrà la carbon tax.

Sono solo alcuni tra i circa 40 paesi e le oltre 20 città, regioni e province che utilizzano o intendono mettere un prezzo al carbonio per abbattere le emissioni di gas serra. Complessivamente, le iniziative in funzione ad oggi valgono quasi 50 miliardi dollari, secondo le stime della Banca Mondiale e del nuovo Carbon Pricing Watch di Ecofys, un rapporto sullo stato e le tendenze dei prezzi del carbonio di cui si attende il rilascio nel prossimo futuro.

«Un prezzo del carbonio efficace è parte essenziale di un pacchetto di politiche in grado di ridurre le emissioni e guidare l’economia verso una bassa intensità di carbonio – ha detto la vice presidente della Banca Mondiale, Rachel Kyte – Esso rende l’inquinamento più costoso, incentiva l’efficienza, la produzione energetica pulita e aiuta gli imprenditori e gli investitori a capire gli scenari a lungo termine».

 

Mercato del carbonio crescita e prospettive

 

Il grande business spinge per implementare il mercato del carbonio

Per anni, le imprese e i governi hanno discusso separatamente i rischi che i cambiamenti climatici rappresentano per loro catene di approvvigionamento e per le persone.

«Oggi invece – sostiene Kite –tutti sono intorno a tavoli di lavoro per sviluppare le soluzioni economicamente più efficaci contro il cambiamento climatico».

L’uso di strumenti finanziari per l’approccio al cambiamento climatico è promosso anche dalla Carbon Pricing Leadership Coalition, organizzata da Banca Mondiale, World Economic Forum, We Mean Business Coalition e altre 12 organizzazioni di business internazionali.

 

I governi, in vista della COP 21 di Parigi, stanno includendo il carbon pricing nei loro impegni climatici. L’Unione Europea, ad esempio, prevede di riformare il suo sistema di scambio delle emissioni, il primo e più grande ETS del mondo, come parte dell’obiettivo di riduzione delle emissioni di un 40% entro 2030, rispetto ai livelli del 1990.

I leader europei, nelle ultime settimane, hanno chiesto l’utilizzo del prezzo del carbonio su scala internazionale. Il cancelliere tedesco Angela Merkel e il presidente francese François Hollande hanno pubblicato un  invito congiunto il 19 maggio, che includeva «l’introduzione di mercati del carbonio a livello nazionale e regionale, con l’obiettivo di dare forti incentivi economici per la trasformazione a basso tenore di carbonio».

 

Mercato del carbonio crescita e prospettive_

 

Le strategie di carbon pricing

I governi possono prendere strade diverse per mettere un prezzo sul carbonio. I sistemi di scambio delle emissioni, tra i metodi più comuni, impostano un tetto alla CO2 che si abbassa gradualmente e crea un mercato che consente agli emettitori di acquistare o vendere quote di CO2 fino a un certo limite. Il valore del livello globale del sistema ETS è passato dai 32 miliardi dollari di un anno fa ai 34 miliardi dollari di oggi, nonostante l’abrogazione della carbon tax da parte dell’Australia.

Le carbon taxes attualmente valgono 14 miliardi dollari a livello globale, vengono riscosse ad un tasso fisso a basato sulle emissioni di gas serra o sul contenuto di carbonio nel carburante. Insieme, questi strumenti di tariffazione del carbonio coprono oggi circa 7 Gt di CO2 equivalenti, ovvero il 12% delle emissioni di gas serra del mondo in un anno. I paesi responsabili di quasi un quarto delle emissioni globali di gas climalteranti hanno ora un meccanismo di carbon pricing.

 

Anche le entrate derivanti da questo business vengono utilizzate diversamente da luogo a luogo, spesso con l’obiettivo di sostenere sforzi di mitigazione dei cambiamenti climatici. La direttiva europea sull’ETS, per esempio, richiede che almeno la metà dei ricavi vengano utilizzati per scopi climatici ed energetici quali l’efficienza energetica, le energie rinnovabili, la ricerca e il trasporto sostenibile.

About Author / La Redazione

Rinnovabili • Batterie al sodio allo stato solido

Batterie al sodio allo stato solido, verso la produzione di massa

Grazie ad un nuovo processo sintetico è stato creato un elettrolita di solfuro solido dotato della più alta conduttività per gli ioni di sodio più alta mai registrata. Circa 10 volte superiore a quella richiesta per l'uso pratico

Batterie al sodio allo stato solido
via Depositphotos

Batterie al Sodio allo Stato Solido più facili da Produrre

La batterie allo stato solido incarnano a tutti gli effetti il nuovo mega trend dell’accumulo elettrochimico. E mentre diverse aziende automobilistiche tentano di applicare questa tecnologia agli ioni di litio, c’è chi sta percorrendo strade parallele. É il caso di alcuni ingegneri dell’Università Metropolitana di Osaka, in Giappone. Qui i professori Osaka Atsushi Sakuda e Akitoshi Hayash hanno guidato un gruppo di ricerca nella realizzazione di batterie al sodio allo stato solido attraverso un innovativo processo di sintesi.

Batterie a Ioni Sodio, nuova Frontiera dell’Accumulo

Le batterie al sodio (conosciute erroneamente anche come batterie al sale) hanno conquistato negli ultimi anni parecchia attenzione da parte del mondo scientifico e industriale. L’abbondanza e la facilità di reperimento di questo metallo alcalino ne fanno un concorrente di primo livello dei confronti del litio. Inoltre l’impegno costante sul fronte delle prestazioni sta portando al superamento di alcuni svantaggi intrinseci, come la minore capacità. L’ultimo traguardo raggiunto in questo campo appartiene ad una ricerca cinese che ha realizzato un unità senza anodo con una densità di energia superiore ai 200 Wh/kg.

Integrare questa tecnologia con l’impiego di elettroliti solidi potrebbe teoricamente dare un’ulteriore boost alla densità energetica e migliorare i cicli di carica-scarica (nota dolente per le tradizionali batterie agli ioni di sodio). Quale elettrolita impiegare in questo caso? Quelli di solfuro rappresentano una scelta interessante grazie alla loro elevata conduttività ionica e lavorabilità. Peccato che la sintesi degli elettroliti solforati non sia così semplice e controllabile. Il che si traduce in un’elevata barriera per la produzione commerciale delle batterie al sodio allo stato solido.

Un Flusso di Polisolfuro reattivo

É qui che si inserisce il lavoro del team di Sakuda a Hayash. Gli ingegneri hanno messo a punto un processo sintetico che impiega sali fusi di polisolfuro reattivo per sviluppare elettroliti solidi solforati. Nel dettaglio utilizzando il flusso di polisolfuro Na2Sx come reagente stechiometrico, i ricercatori hanno sintetizzato due elettroliti di solfuri di sodio dalle caratteristiche distintive, uno dotato della conduttività degli ioni di sodio più alta al mondo (circa 10 volte superiore a quella richiesta per l’uso pratico) e uno vetroso con elevata resistenza alla riduzione.

Questo processo è utile per la produzione di quasi tutti i materiali solforati contenenti sodio, compresi elettroliti solidi e materiali attivi per elettrodi“, ha affermato il professor Sakuda. “Inoltre, rispetto ai metodi convenzionali, rende più semplice ottenere composti che mostrano prestazioni più elevate, quindi crediamo che diventerà una metodologia mainstream per il futuro sviluppo di materiali per batterie al sodio completamente allo stato solido“.  I risultati sono stati pubblicati su Energy Storage Materials and Inorganic Chemistry .

Rinnovabili •
About Author / Stefania Del Bianco

Giornalista scientifica. Da sempre appassionata di hi-tech e innovazione energetica, ha iniziato a collaborare alla testata fin dalle prime fasi progettuali, profilando le aziende di settore. Nel 2008 è entrata a far parte del team di redattori e nel 2011 è diventata coordinatrice di redazione. Negli anni ha curato anche la comunicazione e l'ufficio stampa di Rinnovabili.it. Oggi è Caporedattrice del quotidiano e, tra le altre cose, si occupa quotidianamente delle novità sulle rinnovabili, delle politiche energetiche e delle tematiche legate a tecnologie e mercato.


Rinnovabili • fotovoltaico materiale quantistico

Fotovoltaico, ecco il materiale quantistico con un’efficienza del 190%

Un gruppo di scienziati della Lehigh University ha sviluppato un materiale dotato di una efficienza quantistica esterna di 90 punti percentuali sopra quella delle celle solari tradizionali

fotovoltaico materiale quantistico
via Depositphotos

Nuovo materiale quantistico con un assorbimento solare medio dell’80%

Atomi di rame inseriti tra strati bidimensionali di seleniuro di germanio e solfuro di stagno. Questa la ricetta messa a punto dai fisici Srihari Kastuar e Chinedu Ekuma nei laboratori della Lehigh University, negli Stati Uniti, per dare una svecchiata alla prestazioni delle celle solari. Il duo di ricercatori ha così creato un nuovo materiale quantistico dalle interessanti proprietà fotovoltaiche. Impiegato come strato attivo in una cella prototipo, infatti, il nuovo materiale ha mostrato un assorbimento solare medio dell’80%, un alto tasso di generazione di portatori fotoeccitati e un’efficienza quantistica esterna (EQE) record del 190%. Secondo gli scienziati il risultato raggiunto supera di gran lunga il limite teorico di efficienza di Shockley-Queisser per i materiali a base di silicio e spinge il campo dei materiali quantistici per il fotovoltaico a nuovi livelli. 

leggi anche Fotovoltaico in perovskite, i punti quantici raggiungono un’efficienza record

L’efficienza quantistica esterna

Tocca fare una precisazione. L’efficienza quantistica esterna non va confusa con l’efficienza di conversione, il dato più celebre quando si parla di prestazioni solari. L’EQE rappresenta il rapporto tra il numero di elettroni che danno luogo a una corrente in un circuito esterno e il numero di fotoni incidenti ad una precisa lunghezza d’onda

Nelle celle solari tradizionali, l’EQE massimo è del 100%, tuttavia negli ultimi anni alcuni materiali e configurazioni avanzate hanno dimostrato la capacità di generare e raccogliere più di un elettrone da ogni fotone ad alta energia incidente, per un efficienza quantistica esterna superiore al 100%. Il risultato di Kastua e Ekuma, però, rappresenta un unicum nel settore.

Celle solari a banda intermedia

Per il loro lavoro due fisici sono partiti da un campo particolare della ricerca fotovoltaica. Parliamo delle celle solari a banda intermedia (IBSC – Intermediate Band Solar Cells), una tecnologia emergente che ha il potenziale per rivoluzionare la produzione di energia pulita. In questi sistemi la radiazione solare può eccitare i portatori dalla banda di valenza a quella di conduzione, oltre che direttamente, anche in maniera graduale. Come?  “Passando” per l’appunto attraverso stati di una banda intermedia, livelli energetici specifici posizionati all’interno della struttura elettronica di un materiale creato ad hoc. “Ciò consente a un singolo fotone di provocare generazioni multiple di eccitoni attraverso un processo di assorbimento in due fasi“, scrivono i due ricercatori sulla rivista Science Advances.

Nel nuovo materiale quantistico creato dagli scienziati della Lehigh University questi stati hanno livelli di energia all’interno dei gap di sottobanda ideali. Una volta testato all’interno di una cella fotovoltaica prototipale il materiale ha mostrato di poter migliorare l’assorbimento e la generazione di portatori nella gamma dello spettro dal vicino infrarosso alla luce visibile. 

La rivoluzione dei materiali quantistici

Il duo ha sviluppato il nuovo materiale sfruttando i “gap di van der Waals”, spazi atomicamente piccoli tra materiali bidimensionali stratificati. Questi spazi possono confinare molecole o ioni e gli scienziati dei materiali li usano comunemente per inserire, o “intercalare”, altri elementi per ottimizzare le proprietà dei materiali. Per la precisione hanno inserito atomi di rame tra strati di seleniuro di germanio e solfuro di stagno. “Rappresenta un candidato promettente per lo sviluppo di celle solari ad alta efficienza di prossima generazione – ha sottolineato Ekuma – che svolgeranno un ruolo cruciale nell’affrontare il fabbisogno energetico globale“.

Rinnovabili •
About Author / Stefania Del Bianco

Giornalista scientifica. Da sempre appassionata di hi-tech e innovazione energetica, ha iniziato a collaborare alla testata fin dalle prime fasi progettuali, profilando le aziende di settore. Nel 2008 è entrata a far parte del team di redattori e nel 2011 è diventata coordinatrice di redazione. Negli anni ha curato anche la comunicazione e l'ufficio stampa di Rinnovabili.it. Oggi è Caporedattrice del quotidiano e, tra le altre cose, si occupa quotidianamente delle novità sulle rinnovabili, delle politiche energetiche e delle tematiche legate a tecnologie e mercato.