Rinnovabili • facciata traspirante

SOM inaugura la prima facciata “traspirante” ispirata alla natura

Strategie biofile, facciata traspirante, una cortina antipioggia per il raffrescamento evaporativo e l'attenta progettazione fanno della torre un esempio green

facciata traspirante
Shenzhen Rural Commercial Bank credits: SOM © Seth Powers

La facciata traspirante a doppia pelle libera gli ambienti interni e funge allo stesso tempo da schermatura solare

(Rinnovabili.it) – Pochi giorni fa è stato inaugurato a Shenzhen l’ultimo sorprendente edificio progettato da SOM, Skidmore, Owings & Merrill, dotato di una facciata traspirante e di un sofisticato sistema di controllo ambientale.

A sorprendere il visitatore che si trova a percorrere il vicino parco interno ad uno dei quartieri degli affari più produttivi della città cinese di Shenzhen, è il particolarissimo involucro esterno. Si tratta della facciata a doppia pelle della Shenzhen Rural Commercial Bank, il cui rivestimento esterno ricorda un esoscheletro direttamente ispirato alla natura.

Doppia pelle per doppia funzione

La torre è alta 158 metri per 33 piani ed incorpora una serie di strategie progettuali biofile e sostenibili che migliorano notevolmente il benessere del personale, senza pesare sui consumi. L’obiettivo era quello di rendere l’edifico piacevole da vivere nonostante il clima tropicale umido e le caldi estati della regione.
La facciata traspirante della torre è definita da una griglia esterna che funge sia da sistema strutturale che da elemento di schermatura. Spostando tutti i carichi sulla facciata, il team di SOM è riuscito ad eliminare il problema delle eventuali colonne portanti interne, generando ampi ambienti open space.

Grazie alla schermatura solare esterna il guadagno solare viene ridotto di circa il 34% minimizzando anche i fenomeni di abbagliamento.

Esploriamo sempre le opportunità per sintetizzare soluzioni ingegneristiche creative con il design architettonico. Il quartier generale della Rural Commercial Bank ci ha dato la possibilità di incorporare un diagrid, simile a un esoscheletro, che tira la struttura verso l’esterno e sospende efficacemente la torre all’interno per creare spazi di lavoro privi di colonne”, spiega Scott Duncan, SOM Design Partner.

Sistema di raffrescamento ispirato dal feng shui

Shenzhen Rural Commercial Bank credits: SOM © Seth Powers

La nuova torre di Shenzhen attinge direttamente dai principi del feng shui, dove l’acqua è sinonimo di ricchezza, per incorporare un particolarissimi sistema di raffrescamento.

La lobby al piano terra è circondata da una piscina riflettente, mentre dietro la reception trova posto un “muro d’acqua”.

Leggi anche Urban Sequoia: il grattacielo di SOM che cattura la CO2

Ma la caratteristica più interessante è sicuramente la “cortina antipioggia” alta 15 metri dove gocce d’acqua scendono a cascata lungo filamenti traslucidi, rivestendo le pareti di vetro della lobby ultra trasparente. Questi giochi d’acqua forniscono sollievo nelle calde e prolungate giornate estive, abbassando la temperatura grazie al naturale effetto di raffrescamento evaporativo. Questo ambiente è arricchito da apparecchi di illuminazione puntuale a soffitto che imitano le gocce di pioggia.

Ventilazione naturale e schermatura automatizzata

Shenzhen Rural Commercial Bank credits: SOM © Seth Powers
Shenzhen Rural Commercial Bank credits: SOM © Seth Powers

Due ampi atrii verticali ripercorrono l’intera altezza della torre. E’ qui che la facciata traspirante consente agli occupanti di regolare il proprio benessere interno, aprendo o chiudendo manualmente una serie di feritoie per permettere all’aria fresca di circolare internamente. L’edificio letteralmente respira generando significativi risparmi in termini di efficienza ambientale ed energetica.

Le pareti esterne degli uffici sono poi definite da un sistema di schermature sensibile alla luce diurna e automatizzato.

Il lavoro di SOM per la Shenzhen Rural Commercial Bank gli è valsa la certificazione LEED Platinum. Ora punta alla certificazione China Green Star.

Rinnovabili •
About Author / Alessia Bardi

Si è laureata al Politecnico di Milano inaugurando il primo corso di Architettura Ambientale della Facoltà. L’interesse verso la sostenibilità in tutte le sue forme è poi proseguito portandola per la tesi fino in India, Uganda e Galizia. Parallelamente alla carriera di Architetto ha avuto l’opportunità di collaborare con il quotidiano Rinnovabili.it scrivendo proprio di ciò che più l’appassiona. Una collaborazione che dura tutt’oggi come coordinatrice delle sezioni Greenbuilding e Smart City. Portando avanti la sua passione per l’arte, l’innovazione ed il disegno ha inoltre collaborato con un team creativo realizzando una linea di gioielli stampati in 3D.


Rinnovabili • Batterie al sodio allo stato solido

Batterie al sodio allo stato solido, verso la produzione di massa

Grazie ad un nuovo processo sintetico è stato creato un elettrolita di solfuro solido dotato della più alta conduttività per gli ioni di sodio più alta mai registrata. Circa 10 volte superiore a quella richiesta per l'uso pratico

Batterie al sodio allo stato solido
via Depositphotos

Batterie al Sodio allo Stato Solido più facili da Produrre

La batterie allo stato solido incarnano a tutti gli effetti il nuovo mega trend dell’accumulo elettrochimico. E mentre diverse aziende automobilistiche tentano di applicare questa tecnologia agli ioni di litio, c’è chi sta percorrendo strade parallele. É il caso di alcuni ingegneri dell’Università Metropolitana di Osaka, in Giappone. Qui i professori Osaka Atsushi Sakuda e Akitoshi Hayash hanno guidato un gruppo di ricerca nella realizzazione di batterie al sodio allo stato solido attraverso un innovativo processo di sintesi.

Batterie a Ioni Sodio, nuova Frontiera dell’Accumulo

Le batterie al sodio (conosciute erroneamente anche come batterie al sale) hanno conquistato negli ultimi anni parecchia attenzione da parte del mondo scientifico e industriale. L’abbondanza e la facilità di reperimento di questo metallo alcalino ne fanno un concorrente di primo livello dei confronti del litio. Inoltre l’impegno costante sul fronte delle prestazioni sta portando al superamento di alcuni svantaggi intrinseci, come la minore capacità. L’ultimo traguardo raggiunto in questo campo appartiene ad una ricerca cinese che ha realizzato un unità senza anodo con una densità di energia superiore ai 200 Wh/kg.

Integrare questa tecnologia con l’impiego di elettroliti solidi potrebbe teoricamente dare un’ulteriore boost alla densità energetica e migliorare i cicli di carica-scarica (nota dolente per le tradizionali batterie agli ioni di sodio). Quale elettrolita impiegare in questo caso? Quelli di solfuro rappresentano una scelta interessante grazie alla loro elevata conduttività ionica e lavorabilità. Peccato che la sintesi degli elettroliti solforati non sia così semplice e controllabile. Il che si traduce in un’elevata barriera per la produzione commerciale delle batterie al sodio allo stato solido.

Un Flusso di Polisolfuro reattivo

É qui che si inserisce il lavoro del team di Sakuda a Hayash. Gli ingegneri hanno messo a punto un processo sintetico che impiega sali fusi di polisolfuro reattivo per sviluppare elettroliti solidi solforati. Nel dettaglio utilizzando il flusso di polisolfuro Na2Sx come reagente stechiometrico, i ricercatori hanno sintetizzato due elettroliti di solfuri di sodio dalle caratteristiche distintive, uno dotato della conduttività degli ioni di sodio più alta al mondo (circa 10 volte superiore a quella richiesta per l’uso pratico) e uno vetroso con elevata resistenza alla riduzione.

Questo processo è utile per la produzione di quasi tutti i materiali solforati contenenti sodio, compresi elettroliti solidi e materiali attivi per elettrodi“, ha affermato il professor Sakuda. “Inoltre, rispetto ai metodi convenzionali, rende più semplice ottenere composti che mostrano prestazioni più elevate, quindi crediamo che diventerà una metodologia mainstream per il futuro sviluppo di materiali per batterie al sodio completamente allo stato solido“.  I risultati sono stati pubblicati su Energy Storage Materials and Inorganic Chemistry .

Rinnovabili •
About Author / Stefania Del Bianco

Giornalista scientifica. Da sempre appassionata di hi-tech e innovazione energetica, ha iniziato a collaborare alla testata fin dalle prime fasi progettuali, profilando le aziende di settore. Nel 2008 è entrata a far parte del team di redattori e nel 2011 è diventata coordinatrice di redazione. Negli anni ha curato anche la comunicazione e l'ufficio stampa di Rinnovabili.it. Oggi è Caporedattrice del quotidiano e, tra le altre cose, si occupa quotidianamente delle novità sulle rinnovabili, delle politiche energetiche e delle tematiche legate a tecnologie e mercato.


Rinnovabili • fotovoltaico materiale quantistico

Fotovoltaico, ecco il materiale quantistico con un’efficienza del 190%

Un gruppo di scienziati della Lehigh University ha sviluppato un materiale dotato di una efficienza quantistica esterna di 90 punti percentuali sopra quella delle celle solari tradizionali

fotovoltaico materiale quantistico
via Depositphotos

Nuovo materiale quantistico con un assorbimento solare medio dell’80%

Atomi di rame inseriti tra strati bidimensionali di seleniuro di germanio e solfuro di stagno. Questa la ricetta messa a punto dai fisici Srihari Kastuar e Chinedu Ekuma nei laboratori della Lehigh University, negli Stati Uniti, per dare una svecchiata alla prestazioni delle celle solari. Il duo di ricercatori ha così creato un nuovo materiale quantistico dalle interessanti proprietà fotovoltaiche. Impiegato come strato attivo in una cella prototipo, infatti, il nuovo materiale ha mostrato un assorbimento solare medio dell’80%, un alto tasso di generazione di portatori fotoeccitati e un’efficienza quantistica esterna (EQE) record del 190%. Secondo gli scienziati il risultato raggiunto supera di gran lunga il limite teorico di efficienza di Shockley-Queisser per i materiali a base di silicio e spinge il campo dei materiali quantistici per il fotovoltaico a nuovi livelli. 

leggi anche Fotovoltaico in perovskite, i punti quantici raggiungono un’efficienza record

L’efficienza quantistica esterna

Tocca fare una precisazione. L’efficienza quantistica esterna non va confusa con l’efficienza di conversione, il dato più celebre quando si parla di prestazioni solari. L’EQE rappresenta il rapporto tra il numero di elettroni che danno luogo a una corrente in un circuito esterno e il numero di fotoni incidenti ad una precisa lunghezza d’onda

Nelle celle solari tradizionali, l’EQE massimo è del 100%, tuttavia negli ultimi anni alcuni materiali e configurazioni avanzate hanno dimostrato la capacità di generare e raccogliere più di un elettrone da ogni fotone ad alta energia incidente, per un efficienza quantistica esterna superiore al 100%. Il risultato di Kastua e Ekuma, però, rappresenta un unicum nel settore.

Celle solari a banda intermedia

Per il loro lavoro due fisici sono partiti da un campo particolare della ricerca fotovoltaica. Parliamo delle celle solari a banda intermedia (IBSC – Intermediate Band Solar Cells), una tecnologia emergente che ha il potenziale per rivoluzionare la produzione di energia pulita. In questi sistemi la radiazione solare può eccitare i portatori dalla banda di valenza a quella di conduzione, oltre che direttamente, anche in maniera graduale. Come?  “Passando” per l’appunto attraverso stati di una banda intermedia, livelli energetici specifici posizionati all’interno della struttura elettronica di un materiale creato ad hoc. “Ciò consente a un singolo fotone di provocare generazioni multiple di eccitoni attraverso un processo di assorbimento in due fasi“, scrivono i due ricercatori sulla rivista Science Advances.

Nel nuovo materiale quantistico creato dagli scienziati della Lehigh University questi stati hanno livelli di energia all’interno dei gap di sottobanda ideali. Una volta testato all’interno di una cella fotovoltaica prototipale il materiale ha mostrato di poter migliorare l’assorbimento e la generazione di portatori nella gamma dello spettro dal vicino infrarosso alla luce visibile. 

La rivoluzione dei materiali quantistici

Il duo ha sviluppato il nuovo materiale sfruttando i “gap di van der Waals”, spazi atomicamente piccoli tra materiali bidimensionali stratificati. Questi spazi possono confinare molecole o ioni e gli scienziati dei materiali li usano comunemente per inserire, o “intercalare”, altri elementi per ottimizzare le proprietà dei materiali. Per la precisione hanno inserito atomi di rame tra strati di seleniuro di germanio e solfuro di stagno. “Rappresenta un candidato promettente per lo sviluppo di celle solari ad alta efficienza di prossima generazione – ha sottolineato Ekuma – che svolgeranno un ruolo cruciale nell’affrontare il fabbisogno energetico globale“.

Rinnovabili •
About Author / Stefania Del Bianco

Giornalista scientifica. Da sempre appassionata di hi-tech e innovazione energetica, ha iniziato a collaborare alla testata fin dalle prime fasi progettuali, profilando le aziende di settore. Nel 2008 è entrata a far parte del team di redattori e nel 2011 è diventata coordinatrice di redazione. Negli anni ha curato anche la comunicazione e l'ufficio stampa di Rinnovabili.it. Oggi è Caporedattrice del quotidiano e, tra le altre cose, si occupa quotidianamente delle novità sulle rinnovabili, delle politiche energetiche e delle tematiche legate a tecnologie e mercato.