Rinnovabili • architettura sostenibile

Fare Architettura sostenibile è possibile, basta un po’ di “dugnad”

Quattro best practice di architettura sostenibile di MAD Archiarkitekter dal grattacielo in legno, al restauro di un edificio del 1800, puntando a qualità sociale e progettuale

“WoHo Berlino” – © Donatas Grinius / Mad arkitekter

(Rinnovabili.it) – Lo studio norvegese di MAD Archiarkitekter mostra attraverso 4 esempi di architettura sostenibile le molteplici possibilità offerte dalla progettazione partecipata sviluppata a misura d’uomo ed in simbiosi con la natura. Come si ottengono questi risultati? Con un po’ di dugnad secondo i progettisti di MAD.

In norvegese infatti, la parola dugnad indica un’antica tradizione che incoraggiava tutti a contribuire per raggiungere uno scopo comune. Si basa su di un insieme di relazioni sociali e reciprocità che, per il team norvegese, dovrebbe essere alla base di qualsiasi progetto se si vuole puntare ad un futuro sostenibile.

Per dimostrarlo MAD Archiarkitekter hanno organizzato una mostra all’AEDES Architecture Forum di Berlino presentando quattro best pratice di architettura sostenibile da loro progettati. La caratteristica comune ai 4 esempi è l’attenzione all’ambiente preesistente, sia inteso come ambiente naturale che come ambiente costruito. Secondo gli architetti, il potere della “positività” e della condivisione è essenziale per assicurare ai progetti un futuro, ed interpretare al meglio le sfide sociali e climatiche che ci stiamo trovando ad affrontare.

Le quattro best pratice di architettura sostenibile

Kristian August Gate 13 a Tullinløkka – Oslo

In questo caso si tratta di un progetto di riutilizzo dell’esistente rivoluzionario. Completato nell’ottobre del 2020, la struttura recupera un edificio per uffici degli anni ’50 minacciato dalla demolizione. Qui il 70% dei materiali sono stati riutilizzati nella ristrutturazione e nelle nuove costruzioni, arrivando a recuperare gli stessi elementi portanti. Il progetto ha vinto numerosi riconoscimenti quale esempio unico di come potrebbero essere svolti gli interventi di riqualificazione. E’ tra i candidati per il Premio dell’Unione Europea per l’Architettura Contemporanea – Mies van der Rohe 2022.

Recipe for Future Living per Reinventing Cities, a Stovner – Oslo

"Reinventing Cities – Recipe for Future Living" in Oslo. © Imigo
“Reinventing Cities – Recipe for Future Living” in Oslo. © Imigo Mad arkitekter

Nel 2019 Mad Archiarkitekter si aggiudica la vittoria al concorso Reinventing Cities di C40, con il progetto Recipe for Future Living. Alla base di questo esempio di rigenerazione urbana c’è il concetto di economia circolare, basandosi unicamente sull’uso sostenibile delle risorse e sul riciclo. Il concept è al momento in fase di studio da parte delle autorità municipali per procedere con lo sviluppo del masterplan.

Festiviteten, a Larvik – Oslo

“Festiviteten” in Larvik, Norway. © Firat Aysim Mad arkitekter

Con Festiviteten il team è riuscito a coniugare il concetto di architettura sostenibile con il restauro di un edificio del 1874. Pur essendo stati utilizzato come municipio, come tribunale o per eventi culturali, l’edificio ha sofferto per anni della mancanza di manutenzione. Il lavoro di restauro di Mad ha permesso di recuperare interamente la struttura affidandosi ad artigiani rinomati ed attenti. Quasi tutti gli elementi sono stati riutilizzati, dove un’azione di questo tipo non era possibile, i componenti sono stati sostituiti da materiali riciclati o a basso impatto ambientale.

WoHo, grattacielo in legno – Berlino

“WoHo Berlino” – © Donatas Grinius / Mad arkitekter Mad arkitekter

Tra qualche anno il WoHo potrebbe diventare il grattacielo in legno più alto d’Europa.

Leggi anche I 10 grattacieli in legno più iconici del 2021

In questo caso il team di architetti si è cimentato con uno dei materiali naturali per eccellenza, il legno, andando a sviluppare una struttura di 29 piani per 98 metri d’altezza. L’idea ha portato a sviluppare un tipico quartiere di Berlino, il Kreuzberg , ma secondo un concetto verticale, prestando la massima attenzione alla qualità dei materiali e delle relazioni sociali.

Se vi capita di passare per Berlino, la mostra Mad About Dugnad Work Together, Build Better sarà visitabile fino al 10 marzo.

Rinnovabili •
About Author / Alessia Bardi

Si è laureata al Politecnico di Milano inaugurando il primo corso di Architettura Ambientale della Facoltà. L’interesse verso la sostenibilità in tutte le sue forme è poi proseguito portandola per la tesi fino in India, Uganda e Galizia. Parallelamente alla carriera di Architetto ha avuto l’opportunità di collaborare con il quotidiano Rinnovabili.it scrivendo proprio di ciò che più l’appassiona. Una collaborazione che dura tutt’oggi come coordinatrice delle sezioni Greenbuilding e Smart City. Portando avanti la sua passione per l’arte, l’innovazione ed il disegno ha inoltre collaborato con un team creativo realizzando una linea di gioielli stampati in 3D.


Rinnovabili • Batterie al sodio allo stato solido

Batterie al sodio allo stato solido, verso la produzione di massa

Grazie ad un nuovo processo sintetico è stato creato un elettrolita di solfuro solido dotato della più alta conduttività per gli ioni di sodio più alta mai registrata. Circa 10 volte superiore a quella richiesta per l'uso pratico

Batterie al sodio allo stato solido
via Depositphotos

Batterie al Sodio allo Stato Solido più facili da Produrre

La batterie allo stato solido incarnano a tutti gli effetti il nuovo mega trend dell’accumulo elettrochimico. E mentre diverse aziende automobilistiche tentano di applicare questa tecnologia agli ioni di litio, c’è chi sta percorrendo strade parallele. É il caso di alcuni ingegneri dell’Università Metropolitana di Osaka, in Giappone. Qui i professori Osaka Atsushi Sakuda e Akitoshi Hayash hanno guidato un gruppo di ricerca nella realizzazione di batterie al sodio allo stato solido attraverso un innovativo processo di sintesi.

Batterie a Ioni Sodio, nuova Frontiera dell’Accumulo

Le batterie al sodio (conosciute erroneamente anche come batterie al sale) hanno conquistato negli ultimi anni parecchia attenzione da parte del mondo scientifico e industriale. L’abbondanza e la facilità di reperimento di questo metallo alcalino ne fanno un concorrente di primo livello dei confronti del litio. Inoltre l’impegno costante sul fronte delle prestazioni sta portando al superamento di alcuni svantaggi intrinseci, come la minore capacità. L’ultimo traguardo raggiunto in questo campo appartiene ad una ricerca cinese che ha realizzato un unità senza anodo con una densità di energia superiore ai 200 Wh/kg.

Integrare questa tecnologia con l’impiego di elettroliti solidi potrebbe teoricamente dare un’ulteriore boost alla densità energetica e migliorare i cicli di carica-scarica (nota dolente per le tradizionali batterie agli ioni di sodio). Quale elettrolita impiegare in questo caso? Quelli di solfuro rappresentano una scelta interessante grazie alla loro elevata conduttività ionica e lavorabilità. Peccato che la sintesi degli elettroliti solforati non sia così semplice e controllabile. Il che si traduce in un’elevata barriera per la produzione commerciale delle batterie al sodio allo stato solido.

Un Flusso di Polisolfuro reattivo

É qui che si inserisce il lavoro del team di Sakuda a Hayash. Gli ingegneri hanno messo a punto un processo sintetico che impiega sali fusi di polisolfuro reattivo per sviluppare elettroliti solidi solforati. Nel dettaglio utilizzando il flusso di polisolfuro Na2Sx come reagente stechiometrico, i ricercatori hanno sintetizzato due elettroliti di solfuri di sodio dalle caratteristiche distintive, uno dotato della conduttività degli ioni di sodio più alta al mondo (circa 10 volte superiore a quella richiesta per l’uso pratico) e uno vetroso con elevata resistenza alla riduzione.

Questo processo è utile per la produzione di quasi tutti i materiali solforati contenenti sodio, compresi elettroliti solidi e materiali attivi per elettrodi“, ha affermato il professor Sakuda. “Inoltre, rispetto ai metodi convenzionali, rende più semplice ottenere composti che mostrano prestazioni più elevate, quindi crediamo che diventerà una metodologia mainstream per il futuro sviluppo di materiali per batterie al sodio completamente allo stato solido“.  I risultati sono stati pubblicati su Energy Storage Materials and Inorganic Chemistry .

Rinnovabili •
About Author / Stefania Del Bianco

Giornalista scientifica. Da sempre appassionata di hi-tech e innovazione energetica, ha iniziato a collaborare alla testata fin dalle prime fasi progettuali, profilando le aziende di settore. Nel 2008 è entrata a far parte del team di redattori e nel 2011 è diventata coordinatrice di redazione. Negli anni ha curato anche la comunicazione e l'ufficio stampa di Rinnovabili.it. Oggi è Caporedattrice del quotidiano e, tra le altre cose, si occupa quotidianamente delle novità sulle rinnovabili, delle politiche energetiche e delle tematiche legate a tecnologie e mercato.


Rinnovabili • fotovoltaico materiale quantistico

Fotovoltaico, ecco il materiale quantistico con un’efficienza del 190%

Un gruppo di scienziati della Lehigh University ha sviluppato un materiale dotato di una efficienza quantistica esterna di 90 punti percentuali sopra quella delle celle solari tradizionali

fotovoltaico materiale quantistico
via Depositphotos

Nuovo materiale quantistico con un assorbimento solare medio dell’80%

Atomi di rame inseriti tra strati bidimensionali di seleniuro di germanio e solfuro di stagno. Questa la ricetta messa a punto dai fisici Srihari Kastuar e Chinedu Ekuma nei laboratori della Lehigh University, negli Stati Uniti, per dare una svecchiata alla prestazioni delle celle solari. Il duo di ricercatori ha così creato un nuovo materiale quantistico dalle interessanti proprietà fotovoltaiche. Impiegato come strato attivo in una cella prototipo, infatti, il nuovo materiale ha mostrato un assorbimento solare medio dell’80%, un alto tasso di generazione di portatori fotoeccitati e un’efficienza quantistica esterna (EQE) record del 190%. Secondo gli scienziati il risultato raggiunto supera di gran lunga il limite teorico di efficienza di Shockley-Queisser per i materiali a base di silicio e spinge il campo dei materiali quantistici per il fotovoltaico a nuovi livelli. 

leggi anche Fotovoltaico in perovskite, i punti quantici raggiungono un’efficienza record

L’efficienza quantistica esterna

Tocca fare una precisazione. L’efficienza quantistica esterna non va confusa con l’efficienza di conversione, il dato più celebre quando si parla di prestazioni solari. L’EQE rappresenta il rapporto tra il numero di elettroni che danno luogo a una corrente in un circuito esterno e il numero di fotoni incidenti ad una precisa lunghezza d’onda

Nelle celle solari tradizionali, l’EQE massimo è del 100%, tuttavia negli ultimi anni alcuni materiali e configurazioni avanzate hanno dimostrato la capacità di generare e raccogliere più di un elettrone da ogni fotone ad alta energia incidente, per un efficienza quantistica esterna superiore al 100%. Il risultato di Kastua e Ekuma, però, rappresenta un unicum nel settore.

Celle solari a banda intermedia

Per il loro lavoro due fisici sono partiti da un campo particolare della ricerca fotovoltaica. Parliamo delle celle solari a banda intermedia (IBSC – Intermediate Band Solar Cells), una tecnologia emergente che ha il potenziale per rivoluzionare la produzione di energia pulita. In questi sistemi la radiazione solare può eccitare i portatori dalla banda di valenza a quella di conduzione, oltre che direttamente, anche in maniera graduale. Come?  “Passando” per l’appunto attraverso stati di una banda intermedia, livelli energetici specifici posizionati all’interno della struttura elettronica di un materiale creato ad hoc. “Ciò consente a un singolo fotone di provocare generazioni multiple di eccitoni attraverso un processo di assorbimento in due fasi“, scrivono i due ricercatori sulla rivista Science Advances.

Nel nuovo materiale quantistico creato dagli scienziati della Lehigh University questi stati hanno livelli di energia all’interno dei gap di sottobanda ideali. Una volta testato all’interno di una cella fotovoltaica prototipale il materiale ha mostrato di poter migliorare l’assorbimento e la generazione di portatori nella gamma dello spettro dal vicino infrarosso alla luce visibile. 

La rivoluzione dei materiali quantistici

Il duo ha sviluppato il nuovo materiale sfruttando i “gap di van der Waals”, spazi atomicamente piccoli tra materiali bidimensionali stratificati. Questi spazi possono confinare molecole o ioni e gli scienziati dei materiali li usano comunemente per inserire, o “intercalare”, altri elementi per ottimizzare le proprietà dei materiali. Per la precisione hanno inserito atomi di rame tra strati di seleniuro di germanio e solfuro di stagno. “Rappresenta un candidato promettente per lo sviluppo di celle solari ad alta efficienza di prossima generazione – ha sottolineato Ekuma – che svolgeranno un ruolo cruciale nell’affrontare il fabbisogno energetico globale“.

Rinnovabili •
About Author / Stefania Del Bianco

Giornalista scientifica. Da sempre appassionata di hi-tech e innovazione energetica, ha iniziato a collaborare alla testata fin dalle prime fasi progettuali, profilando le aziende di settore. Nel 2008 è entrata a far parte del team di redattori e nel 2011 è diventata coordinatrice di redazione. Negli anni ha curato anche la comunicazione e l'ufficio stampa di Rinnovabili.it. Oggi è Caporedattrice del quotidiano e, tra le altre cose, si occupa quotidianamente delle novità sulle rinnovabili, delle politiche energetiche e delle tematiche legate a tecnologie e mercato.